Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 101: 1198-204, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24299892

ABSTRACT

The influence of the physicochemical parameters of substituted aromatic molecules on the phase transition from sol to gel of hydroxypropyl methylcellulose (HPMC) has been investigated using a homologous series of substituted phenols. Using a turbimetric methodology, concentration dependent suppression of phase transition temperature of HPMC was observed for phenol and its derivatives, including methyl-, nitro- and chloro-substituted molecules. Although no strong direct relationship between single molecular physicochemical properties of the phenolic compounds (such as pKa, LogP and other molecular descriptors) and ΔCPT was found for the compounds tested, a successful prediction of behaviour could be obtained by using a combination of parameters. This suggested that the interaction mechanism between HPMC and the substituted aromatic moiety is a complex summation of the different molecular physicochemical properties. Identification of these potentially deleterious chemical moieties may be of value in a pharmaceutical context when considering preformulation of drug structures containing them. An incompatibility between drug and polymer may be indicative of deleterious effects resulting from formulation with hydrophilic matrix dosage forms containing cellulose ethers such as HPMC.


Subject(s)
Methylcellulose/analogs & derivatives , Phase Transition , Phenols/chemistry , Water/chemistry , Hypromellose Derivatives , Methylcellulose/chemistry , Solutions , Structure-Activity Relationship , Transition Temperature
2.
J Pharm Sci ; 95(10): 2145-57, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16871521

ABSTRACT

A real-time confocal fluorescence imaging method has been developed which allows the critical early stages of gel layer formation in hydroxypropylmethylcellulose (HPMC) matrices to be examined. Congo Red, a fluorophore whose fluorescence is selectively intensified when bound to beta-D-glucopyranosyl sequences, has allowed mapping of hydrated polymer regions within the emerging gel layer, and revealed for the first time, the microstructural sequence of polymer hydration during development of the early gel layer. Liquid penetration and swelling can be examined in unprecedented detail. The earliest images revealed an initial phase of liquid ingress into the tablet pore network, followed by the progressive formation of a coherent gel layer by outward columnar swelling and coalescence of hydrated HPMC particles. Salts can markedly affect HPMC matrix behaviour. Gel layer growth in 0.1-0.5 M NaCl was progressively suppressed until at 0.75 M, particles clearly failed to coalesce into a gel layer, although with considerable polymer swelling. The failure to form a limiting diffusion barrier resulted in enhanced liquid penetration of the core, and the swelling of particles that did not coalesce culminated in surface disintegration. This provides direct evidence of physical mechanisms that contribute to salts accelerating drug release from HPMC matrices.


Subject(s)
Gels/chemistry , Methylcellulose/analogs & derivatives , Congo Red/chemistry , Drug Compounding , Drug Stability , Hypromellose Derivatives , Methylcellulose/chemistry , Microscopy, Confocal , Microscopy, Video , Nephelometry and Turbidimetry , Sodium Chloride/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL