Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37752068

ABSTRACT

OBJECTIVE: To evaluate the influence of repeated sprints on kinematic performance and propulsion variables during the acceleration and constant peak velocity phases in wheelchair rugby players classified as defensive (LP-D) or offensive players (HP-O). DESIGN: 22 players (13 LP-D and 9 HP-O) performed 6 × 20 m repeated sprint field tests. We calculated peak wheelchair velocities, propulsion phase times, deceleration phase times, cycle times, and left-right velocity asymmetry of the best and last sprints during the acceleration and constant peak velocity phases; the rate of decline in performance variables between the best and the last sprint and a fatigue index. RESULTS: Peak velocities during the acceleration and constant peak velocity phases and mean velocity over the whole sprint were significantly higher during the best than last sprint. Peak velocities were higher during the acceleration and constant peak velocity phases for the best and last sprint for HP-O. The rate of decline in peak velocity during the constant peak velocity phase was higher for LP-D. Fatigue index and rate of decline in velocities and sprint time were higher for LP-D. CONCLUSIONS: Performance variables and the rate of decline in performance variables depended on functional capacity and wheelchair type.

2.
Scand J Med Sci Sports ; 33(8): 1473-1485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37186476

ABSTRACT

INTRODUCTION: Interlimb asymmetry of strength and/or motor coordination could limit the performance of wheelchair athletes or increase their risk of injury. Studies of interlimb asymmetry in the lower limbs have shown high between-subject variability that does not depend on the side of dominance and that does not change with fatigue. Upper limb asymmetry is particularly large in manual wheelchair athletes with a lower degree of impairment. The aim of this study was to evaluate interlimb asymmetry of forces developed during an upper limb Wingate anaerobic test, the effects of fatigue on force, and differences between high- and low-point players. METHOD: Twenty-five wheelchair basketball players (13 females and 12 males) of male and female national French teams performed a 30s anaerobic Wingate test on an arm ergometer. Participants were classified into two functional categories, high-point (classed from 3 to 4.5) and low-point (classed from 1 to 2.5), according to the International Wheelchair Basketball Federation classification. Left and right arm forces were measured during the pushing and pulling phases at peak power, 10s, and the end of the 30s test. RESULTS: Upper limb asymmetry changed with fatigue during each phase. Force asymmetry differed between peak power, 10s and 30s, with no consistent increase or decrease. Asymmetry did not differ significantly between low- and high-point players but tended to be greater in high-point players. Asymmetry tended to be greater in the females, with significant differences between the males and females in the push phase. CONCLUSION: Inter-subject variability was high, but forces were asymmetric for most participants, especially females. The Wingate anaerobic test could highlight problematic asymmetries that might impact daily life or sports performance.


Subject(s)
Basketball , Wheelchairs , Humans , Male , Female , Anaerobiosis , Ergometry , Upper Extremity
3.
Front Sports Act Living ; 4: 862760, 2022.
Article in English | MEDLINE | ID: mdl-35847453

ABSTRACT

Introduction: Para badminton entered the Paralympic world for the first time with the 2021 Paralympic Games in Tokyo. The particularity of this sport lies in the handling of the wheelchair and the racket simultaneously. To the best of our knowledge, and considering the youthfulness of this sport, it appears that no study has looked at the impact of the badminton racket on the kinetic and spatiotemporal parameters. Therefore, the aim of our study was to investigate the impact of the badminton racket on the amplitude of kinetic and spatiotemporal parameters of wheelchair propulsion, considered as propulsion effectiveness and risk of injury criteria. We hypothesized that holding a badminton racket while propelling the wheelchair modifies the kinetics and temporal parameters of the athlete's propulsion due to the difficulty to hold the handrim, therefore decreasing propulsion effectiveness and increasing risk of injury. Materials and Methods: For six 90-min sessions, 16 able-bodied individuals were introduced to badminton. No injuries hindered their propulsion. They had to propel with and without a racket held on the dominant side along a 20 m straight line at a constant velocity of 5 km/h. They all used the same sports wheelchair equipped with two instrumented wheels (SmartWheel). Results: Participants increased their maximal total force and force rate of rise but decreased their fraction of effective force with their dominant hand compared to the non-dominant hand when using a racket. In addition, they decreased their fraction of effective force, push time, cycle time, and push angle, and increased their maximal propulsive moment, maximal total force, and force rate of rise when comparing the same dominant hand with and without the racket. Discussion: Using a badminton racket modifies the athlete's force application in a way that is generally related to lower propulsion effectiveness and a higher risk for injury. Indeed, it seems that propulsion with a racket prevents from correctly grabbing the handrim.

4.
Front Sports Act Living ; 4: 861592, 2022.
Article in English | MEDLINE | ID: mdl-35721878

ABSTRACT

Introduction: In wheelchair rugby, players use either an offensive or defensive wheelchair depending on their field position and level of impairment. Performance of wheelchair rugby players is related to several parameters, however it is currently unclear if differences in performance are related to wheelchair type or no: the effect of wheelchair type on performance variables has not been evaluated. The aim of this study was to compare offensive and defensive wheelchairs on performance variables during a straight-line sprint. Methods: Thirteen able-bodied people performed two 20 m sprint trials: one with an offensive and one with a defensive wheelchair. Data were collected using inertial measurement units fixed on the wheelchair. Peak wheelchair velocities and left-right asymmetries in peak wheel velocities were measured during the acceleration and constant peak velocity phases. Sprint time, cycle frequency, and mean and maximum velocity were calculated over the entire sprint. Results: The peak velocities of the first 2 pushes (acceleration phase) were significantly higher with the defensive than the offensive wheelchair (p < 0.04 and p < 0.02). Mean and maximum sprint velocity were significantly higher (p < 0.03 and p < 0.04, respectively) with the defensive wheelchair. Cycle frequency and asymmetry did not differ between wheelchairs. Conclusion: Performance was higher with the defensive than the offensive wheelchair, suggesting that the frequent finding that the higher performance of offensive as compared to defensive players is not related to the use of an offensive wheelchair.

5.
Sports Biomech ; : 1-14, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33792504

ABSTRACT

The practice of the wheelchair rugby is becoming more and more worldwide. However, few biomechanical studies have focused on this sport. The aim of this study was to compare kinematic parameters of wheelchair rugby players, classified as defensive players (LP-D) versus offensive players (HP-O). Twenty-nine wheelchair rugby players (17 LP-D and 12 HP-O) performed a 20-m sprint test. The peak velocities, temporal parameters (propulsion phase time, deceleration phase time, cycle time and cycle frequencies) and asymmetries (the difference in peak velocities between the right and the left wheels) were measured at the acceleration and constant peak velocity phases of the sprint by an inertial measurement unit which was placed on each rear wheel. At the acceleration and constant peak velocity phases, peak velocities and cycle frequencies were higher in HP-O players than LP-D players. The deceleration phase times and the cycle times were higher in LP-D players than HP-O players. However, no significant difference in asymmetry was found between LP-D players and HP-O players. The HP-O players showed superior performance than the LP-D players, but they could be more exposed at risk of injury at their upper limbs than LP-D players.

SELECTION OF CITATIONS
SEARCH DETAIL
...