Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370794

ABSTRACT

Ecology and evolution are distinct theories, but the short lifespans and large population sizes of microbes allow evolution to unfold along contemporary ecological time scales. To document this in a natural system, we collected a two-decade, 471-metagenome time series from a single site in a freshwater lake, which we refer to as the TYMEFLIES dataset. This massive sampling and sequencing effort resulted in the reconstruction of 30,389 metagenomic-assembled genomes (MAGs) over 50% complete, which dereplicated into 2,855 distinct genomes (>96% nucleotide sequence identity). We found both ecological and evolutionary processes occurred at seasonal time scales. There were recurring annual patterns at the species level in abundances, nucleotide diversities (π), and single nucleotide variant (SNV) profiles for the majority of all taxa. During annual blooms, we observed both higher and lower nucleotide diversity, indicating that both ecological differentiation and competition drove evolutionary dynamics. Overlayed upon seasonal patterns, we observed long-term change in 20% of the species' SNV profiles including gradual changes, step changes, and disturbances followed by resilience. Most abrupt changes occurred in a single species, suggesting evolutionary drivers are highly specific. Nevertheless, seven members of the abundant Nanopelagicaceae family experienced abrupt change in 2012, an unusually hot and dry year. This shift coincided with increased numbers of genes under selection involved in amino acid and nucleic acid metabolism, suggesting fundamental organic nitrogen compounds drive strain differentiation in the most globally abundant freshwater family. Overall, we observed seasonal and decadal trends in both interspecific ecological and intraspecific evolutionary processes. The convergence of microbial ecology and evolution on the same time scales demonstrates that understanding microbiomes requires a new unified approach that views ecology and evolution as a single continuum.

2.
Microbiome ; 12(1): 15, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38273328

ABSTRACT

BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.


Subject(s)
Ecosystem , Groundwater , Bacteria/genetics , Bacteria/metabolism , Sulfides/metabolism , Oxidation-Reduction , Groundwater/microbiology , Sulfur/metabolism , Biofilms , Hydrogen/metabolism , Phylogeny
4.
5.
mSystems ; 8(5): e0061923, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37702502

ABSTRACT

IMPORTANCE: Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.


Subject(s)
Bacteria , Hydrocarbons , Biodegradation, Environmental , Hydrocarbons/analysis , Bacteria/genetics , Atlantic Ocean , Alkanes/metabolism
6.
ISME J ; 17(11): 1828-1838, 2023 11.
Article in English | MEDLINE | ID: mdl-37596411

ABSTRACT

Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.


Subject(s)
Euryarchaeota , Geologic Sediments , Phylogeny , Euryarchaeota/genetics , Methane/metabolism , RNA, Ribosomal, 16S
7.
J Child Lang ; : 1-37, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493012

ABSTRACT

Many Aboriginal Australian communities are undergoing language shift from traditional Indigenous languages to contact varieties such as Kriol, an English-lexified Creole. Kriol is reportedly characterised by lexical items with highly variable phonological specifications, and variable implementation of voicing and manner contrasts in obstruents (Sandefur, 1986). A language, such as Kriol, characterised by this unusual degree of variability presents Kriol-acquiring children with a potentially difficult language-learning task, and one which challenges the prevalent theories of acquisition. To examine stop consonant acquisition in this unusual language environment, we present a study of Kriol stop and affricate production, followed by a mispronunciation detection study, with Kriol-speaking children (ages 4-7) from a Northern Territory community where Kriol is the lingua franca. In contrast to previous claims, the results suggest that Kriol-speaking children acquire a stable phonology and lexemes with canonical phonemic specifications, and that English experience would not appear to induce this stability.

8.
Nature ; 618(7967): 992-999, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316666

ABSTRACT

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Subject(s)
Archaea , Eukaryota , Phylogeny , Archaea/classification , Archaea/cytology , Archaea/genetics , Eukaryota/classification , Eukaryota/cytology , Eukaryota/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Prokaryotic Cells/classification , Prokaryotic Cells/cytology , Datasets as Topic , Gene Duplication , Evolution, Molecular
9.
ISME Commun ; 3(1): 64, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355707

ABSTRACT

Marine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and metabolic potential within anoxic habitats worldwide.

10.
Phonetica ; 80(1-2): 79-115, 2023 02 23.
Article in English | MEDLINE | ID: mdl-37013664

ABSTRACT

Nonnative or second language (L2) perception of segmental sequences is often characterised by perceptual modification processes, which may "repair" a nonnative sequence that is phonotactically illegal in the listeners' native language (L1) by transforming the sequence into a sequence that is phonotactically legal in the L1. Often repairs involve the insertion of phonetic materials (epenthesis), but we focus, here, on the less-studied phenomenon of perceptual deletion of nonnative phonemes by testing L1 Mandarin listeners' perception of post-vocalic laterals in L2 English using the triangulating methods of a cross-language goodness rating task, an AXB task, and an AX task. The data were analysed in the framework of the Perceptual Assimilation Model (PAM/PAM-L2), and we further investigated the role of L2 vocabulary size on task performance. The experiments indicate that perceptual deletion occurs when the post-vocalic lateral overlaps with the nucleus vowel in terms of tongue backness specification. In addition, Mandarin listeners' discrimination performance in some contexts was significantly correlated with their English vocabulary size, indicating that continuous growth of vocabulary knowledge can drive perceptual learning of novel L2 segmental sequences and phonotactic structures.


Subject(s)
Multilingualism , Speech Perception , Humans , Gestures , Language , Phonetics , Vocabulary
11.
Article in English | MEDLINE | ID: mdl-36642322

ABSTRACT

The functional role of membrane-bound carbonic anhydrases (CAs) has been of keen interest in the past decade, and in particular, studies have linked CA in red muscle, heart, and eye to enhanced tissue oxygen extraction in bony fishes (teleosts). However, the number of purported membrane-bound CA isoforms in teleosts, combined with the imperfect system of CA isoform nomenclature, present roadblocks for ascribing physiological functions to particular CA isoforms across different teleost lineages. Here we developed an organizational framework for membrane-bound CAs in teleosts, providing the latest phylogenetic analysis of extant CA4 and CA4-like isoforms. Our data confirm that there are three distinct isoforms of CA4 (a, b, and c) that are conserved across major teleost lineages, with the exception of CA4c gene being lost in salmonids. Tissue distribution analyses suggest CA4a functions in oxygen delivery across teleost lineages, while CA4b may be specialized for renal acid-base balance and ion regulation. This work provides an important foundation for researchers to elucidate the functional significance of CA4 isoforms in fishes.


Subject(s)
Carbonic Anhydrase IV , Carbonic Anhydrases , Animals , Carbonic Anhydrase IV/genetics , Phylogeny , Carbonic Anhydrases/genetics , Protein Isoforms/genetics , Fishes/genetics , Oxygen
12.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36520069

ABSTRACT

The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.


Subject(s)
Plankton , Water , Gulf of Mexico , Plankton/genetics , Metagenome , Methane/metabolism , Phylogeny , Metagenomics , RNA, Ribosomal, 16S/genetics
13.
Nat Commun ; 13(1): 7516, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473838

ABSTRACT

Microbes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.


Subject(s)
Genomics , Plastic Surgery Procedures , Bacteria/genetics , Sulfur , Nitrogen
14.
mSystems ; 7(4): e0033522, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862818

ABSTRACT

The compositional and physiological responses of autotrophic microbiotas to salinity in lakes remain unclear. In this study, the community composition and carbon fixation pathways of autotrophic microorganisms in lacustrine sediments with a salinity gradient (82.6 g/L to 0.54 g/L) were investigated by using metagenomic analysis. A total of 117 metagenome-assembled genomes (MAGs) with carbon fixation potentially belonging to 20 phyla were obtained. The abundance of these potential autotrophs increased significantly with decreasing salinity, and the variation of sediment autotrophic microbial communities was mainly affected by salinity, pH, and total organic carbon. Notably, along the decreasing salinity gradient, the dominant lineage shifted from Desulfobacterota to Proteobacteria. Meanwhile, the dominant carbon fixation pathway shifted from the Wood-Lungdahl pathway to the less-energy-efficient Calvin-Benson-Bassham cycle, with glycolysis shifting from the Embden-Meyerhof-Parnas pathway to the less-exergonic Entner-Doudoroff pathway. These results suggest that the physiological efficiency of autotrophic microorganisms decreased when the environmental salinity became lower. Metabolic inference of these MAGs revealed that carbon fixation may be coupled to the oxidation of reduced sulfur compounds and ferrous iron, dissimilatory nitrate reduction at low salinity, and dissimilatory sulfate reduction in hypersaline sediments. These results extend our understanding of metabolic versatility and niche diversity of autotrophic microorganisms in saline environments and shed light on the response of autotrophic microbiomes to salinity. These findings are of great significance for understanding the impact of desalination caused by climate warming on the carbon cycle of saline lake ecosystems. IMPORTANCE The Qinghai-Tibetan lakes are experiencing water increase and salinity decrease due to climate warming. However, little is known about how the salinity decrease will affect the composition of autotrophic microbial populations and their carbon fixation pathways. In this study, we used genome-resolved metagenomics to interpret the dynamic changes in the autotrophic microbial community and metabolic pathways along a salinity gradient. The results showed that desalination drove the shift of the dominant microbial lineage from Desulfobacterota to Proteobacteria, enriched autotrophs with lower physiological efficiency pathways, and enhanced coupling between the carbon cycle and other element cycles. These results can predict the future response of microbial communities to lake desalination and improve our understanding of the effect of climate warming on the carbon cycle in saline aquatic ecosystems.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Salinity , Microbiota/genetics , Autotrophic Processes , Proteobacteria , Carbon Cycle
15.
Nat Microbiol ; 7(7): 953-961, 2022 07.
Article in English | MEDLINE | ID: mdl-35760837

ABSTRACT

Asgard archaea are globally distributed prokaryotic microorganisms related to eukaryotes; however, viruses that infect these organisms have not been described. Here, using metagenome sequences recovered from deep-sea hydrothermal sediments, we characterize six relatively large (up to 117 kb) double-stranded DNA (dsDNA) viral genomes that infected two Asgard archaeal phyla, Lokiarchaeota and Helarchaeota. These viruses encode Caudovirales-like structural proteins, as well as proteins distinct from those described in known archaeal viruses. Their genomes contain around 1-5% of genes associated with eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs) and appear to be capable of semi-autonomous genome replication, repair, epigenetic modifications and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. Genomic analysis of these Asgard viruses reveals that they contain features of both prokaryotic and eukaryotic viruses, and provides insights into their potential infection and host interaction mechanisms.


Subject(s)
Archaea , Viruses , Archaea/genetics , Archaea/metabolism , Eukaryota/genetics , Genome, Archaeal , Metagenome , Phylogeny , Viruses/genetics
16.
Environ Microbiol Rep ; 14(2): 308-319, 2022 04.
Article in English | MEDLINE | ID: mdl-35199456

ABSTRACT

Reduced substrates produced by the serpentinization reaction under hydration of olivine may have fuelled biological processes on early Earth. To understand the adaptive strategies and carbon metabolism of the microbes in the serpentinizing ecosystems, we reconstructed 18 draft genomes representing dominant species of Omnitrophicaeota, Gammaproteobacteria and Methanobacteria from the Manleluag serpentinizing spring in Zambales, Philippines (hyperalkaline and rich in methane and hydrogen). Phylogenomics revealed that two genomes were affiliated with a candidate phylum NPL-UPA2 and the references of all our genomes were derived from ground waters, hot springs and the deep biosphere. C1 metabolism appears to be widespread as most of the genomes code for methanogenesis, CO oxidation and CO2 fixation. However, likely due to the low CO2 concentration and election acceptors, the biomass in the spring was extremely low (<103 cell/ml). Various Na+ and K+ transporters and Na+ -driving ATPases appear to be encoded by these genomes, suggesting that nutrient acquisition, bioenergetics and normal cytoplasmic pH were dependent on Na+ and K+ pumps. Our results advance our understanding of the metabolic potentials and bioenergetics of serpentinizing springs and provide a framework of the ecology of early Earth.


Subject(s)
Euryarchaeota , Natural Springs , Carbon/metabolism , Ecosystem , Euryarchaeota/metabolism , Natural Springs/microbiology , Philippines
17.
ISME J ; 16(1): 307-320, 2022 01.
Article in English | MEDLINE | ID: mdl-34331018

ABSTRACT

Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.


Subject(s)
Deltaproteobacteria , Metagenome , Bacteria/genetics , Deltaproteobacteria/genetics , Genomics , Humans , Phylogeny
19.
Front Microbiol ; 12: 660052, 2021.
Article in English | MEDLINE | ID: mdl-34140936

ABSTRACT

DPANN are small-celled archaea that are generally predicted to be symbionts, and in some cases are known episymbionts of other archaea. As the monophyly of the DPANN remains uncertain, we hypothesized that proteome content could reveal relationships among DPANN lineages, constrain genetic overlap with bacteria, and illustrate how organisms with hybrid bacterial and archaeal protein sets might function. We tested this hypothesis using protein family content that was defined in part using 3,197 genomes including 569 newly reconstructed genomes. Protein family content clearly separates the final set of 390 DPANN genomes from other archaea, paralleling the separation of Candidate Phyla Radiation (CPR) bacteria from all other bacteria. This separation is partly driven by hypothetical proteins, some of which may be symbiosis-related. Pacearchaeota with the most limited predicted metabolic capacities have Form II/III and III-like Rubisco, suggesting metabolisms based on scavenged nucleotides. Intriguingly, the Pacearchaeota and Woesearchaeota with the smallest genomes also tend to encode large extracellular murein-like lytic transglycosylase domain proteins that may bind and degrade components of bacterial cell walls, indicating that some might be episymbionts of bacteria. The pathway for biosynthesis of bacterial isoprenoids is widespread in Woesearchaeota genomes and is encoded in proximity to genes involved in bacterial fatty acids synthesis. Surprisingly, in some DPANN genomes we identified a pathway for synthesis of queuosine, an unusual nucleotide in tRNAs of bacteria. Other bacterial systems are predicted to be involved in protein refolding. For example, many DPANN have the complete bacterial DnaK-DnaJ-GrpE system and many Woesearchaeota and Pacearchaeota possess bacterial group I chaperones. Thus, many DPANN appear to have mechanisms to ensure efficient protein folding of both archaeal and laterally acquired bacterial proteins.

20.
Nat Commun ; 12(1): 2404, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893309

ABSTRACT

Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, 'Brockarchaeota', named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.


Subject(s)
Archaea/genetics , Carbon Cycle/genetics , Genome, Archaeal/genetics , Metagenome/genetics , Phylogeny , Archaea/classification , Archaea/metabolism , Carbon/metabolism , China , Geography , Geologic Sediments/microbiology , Hot Springs/microbiology , Hydrothermal Vents/microbiology , Methane/metabolism , RNA, Ribosomal, 16S/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...