Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Article in English | MEDLINE | ID: mdl-38831121

ABSTRACT

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

2.
Biomedicines ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791051

ABSTRACT

Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide. The transcriptomic analysis of senescent MΦ revealed an important inflammatory signature regulated by NFkB. We observed an increased secretion of EVs in senescent MΦ, and these EVs presented an enrichment for ribosomal proteins, major vault protein, pro-inflammatory miRNAs, including miR-21a, miR-155, and miR-132, and several mRNAs. The secretion of senescent MΦ allowed senescent murine embryonic fibroblasts to restart cell proliferation. This antisenescence function of the macrophage secretome may explain their pro-tumorigenic activity and suggest that senolytic treatment to eliminate senescent MΦ could potentially prevent these deleterious effects.

3.
J Alzheimers Dis ; 98(3): 925-940, 2024.
Article in English | MEDLINE | ID: mdl-38517786

ABSTRACT

Background: Caloric restriction (CR) has been recognized for its benefits in delaying age-related diseases and extending lifespan. While its effects on amyloid pathology in Alzheimer's disease (AD) mouse models are well-documented, its effects on tauopathy, another hallmark of AD, are less explored. Objective: To assess the impact of a short-term 30% CR regimen on age-dependent spatial learning deficits and pathological features in a tauopathy mouse model. Methods: We subjected male PS19 tau P301S (hereafter PS19) and age-matched wildtype mice from two age cohorts (4.5 and 7.5 months old) to a 6-week 30% CR regimen. Spatial learning performance was assessed using the Barnes Maze test. Tau pathology, neuroinflammation, hippocampal cell proliferation, and neurogenesis were evaluated in the older cohort by immunohistochemical staining and RT-qPCR. Results: CR mitigated age-dependent spatial learning deficits in PS19 mice but exhibited limited effects on tau pathology and the associated neuroinflammation. Additionally, we found a decrease in hippocampal cell proliferation, predominantly of Iba1+ cells. Conclusions: Our findings reinforce the cognitive benefits conferred by CR despite its limited modulation of disease pathology. Given the pivotal role of microglia in tau-driven pathology, the observed reduction in Iba1+ cells under CR suggests potential therapeutic implications, particularly if CR would be introduced early in disease progression.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Male , Humans , Animals , tau Proteins/genetics , tau Proteins/pharmacology , Spatial Learning , Mice, Transgenic , Caloric Restriction , Neuroinflammatory Diseases , Alzheimer Disease/pathology , Tauopathies/pathology , Maze Learning , Disease Models, Animal
4.
J Alzheimers Dis ; 97(4): 1751-1763, 2024.
Article in English | MEDLINE | ID: mdl-38306030

ABSTRACT

Background: Cellular senescence has been associated with neurodegenerative disease and clearance of senescent cells using genetic or pharmaceutical strategies (senolytics) has demonstrated beneficial effects in mouse models investigating individual disease etiologies of Alzheimer's disease (AD). However, it has remained unclear if senescent cell clearance in a mouse model exhibiting both plaque and tau pathologies modifies the disease state (3xTg). Objective: To investigate the effects of senescent cell clearance in the 3xTg mouse model. Methods: 3xTg mice were treated with senolytics (ABT263 (navitoclax; NAVI), a combination of dasatinib and quercetin (D+Q)), or subjected to transgene-mediated removal of p16-expressing cells (via INK-ATTAC). Results: Senolytic treatments consistently reduced microgliosis and ameliorated both amyloid and tau pathology in 3xTg mice. Using RNA sequencing, we found evidence that synaptic dysfunction and neuroinflammation were attenuated with treatment. These beneficial effects were not observed with short-term senolytic treatment in mice with more advanced disease. Conclusions: Overall, our results further corroborate the beneficial effects senescent cell clearance could have on AD and highlight the importance of early intervention for the treatment of this debilitating disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/pathology , Neurodegenerative Diseases/complications , Senotherapeutics , Mice, Transgenic , Cellular Senescence , Disease Models, Animal , tau Proteins/genetics , tau Proteins/pharmacology
5.
Psychosom Med ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37910129

ABSTRACT

OBJECTIVE: Despite advances toward understanding the etiology of Alzheimer's disease (AD), it remains unclear which aspects of this disease are affected by environmental factors. Chronic life stress increases risk for aging-related diseases including AD. The impact of stress on tauopathies remains understudied. We examined the effects of stress elicited by social (chronic subordination stress, CSS) or psychological/physical (chronic restraint stress, CRS) factors - on the PS19 mouse model of tauopathy. METHODS: Male PS19 mice (average age 6.3 months) were randomized to receive CSS, CRS, or to remain as singly-housed controls. Behavioral tests were used to assess anxiety-like behaviors and cognitive functions. Immunofluorescence staining and western blotting analysis were used to measure levels of astrogliosis, microgliosis and tau burden. Immunohistochemistry was used to assess glucocorticoid receptor expression. RESULTS: PS19 mice exhibit neuroinflammation (GFAP, t-tests; p = 0.0297; Iba1, t-tests; p = 0.006) and tau hyperphosphorylation (t-test, p = 0.0446) in the hippocampus, reduced anxiety (post hoc, p = 0.046), and cognitive deficits, when compared to wild type mice. Surprisingly, CRS reduced hippocampal levels of both total tau and phospho-tauS404 (t-test, p = 0.0116), and attenuated some aspects of both astrogliosis and microgliosis in PS19 mice (t-tests, p = 0.068 to p = 0.0003); however, this was not associated with significant changes in neurodegeneration or cognitive function. Anxiety-like behaviors were increased by CRS (post hoc, p = 0.046). Conversely, CSS impaired spatial learning in Barnes Maze without impacting tau phosphorylation or neurodegeneration and having a minimal impact on gliosis. CONCLUSIONS: Our results demonstrate that social or psychological stress can differentially impact anxiety-like behavior, select cognitive functions, and some aspects of tau-dependent pathology in PS19 male mice, providing entry points for the development of experimental approaches designed to slow AD progression.

6.
NPJ Precis Oncol ; 7(1): 126, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030881

ABSTRACT

High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.

7.
Clin Cancer Res ; 29(23): 4973-4989, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37725593

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common aggressive primary malignant brain tumor in adults with a median age of onset of 68 to 70 years old. Although advanced age is often associated with poorer GBM patient survival, the predominant source(s) of maladaptive aging effects remains to be established. Here, we studied intratumoral and extratumoral relationships between adult patients with GBM and mice with brain tumors across the lifespan. EXPERIMENTAL DESIGN: Electronic health records at Northwestern Medicine and the NCI SEER databases were evaluated for GBM patient age and overall survival. The commercial Tempus and Caris databases, as well as The Cancer Genome Atlas were profiled for gene expression, DNA methylation, and mutational changes with varying GBM patient age. In addition, gene expression analysis was performed on the extratumoral brain of younger and older adult mice with or without a brain tumor. The survival of young and old wild-type or transgenic (INK-ATTAC) mice with a brain tumor was evaluated after treatment with or without senolytics and/or immunotherapy. RESULTS: Human patients with GBM ≥65 years of age had a significantly decreased survival compared with their younger counterparts. While the intra-GBM molecular profiles were similar between younger and older patients with GBM, non-tumor brain tissue had a significantly different gene expression profile between young and old mice with a brain tumor and the eradication of senescent cells improved immunotherapy-dependent survival of old but not young mice. CONCLUSIONS: This work suggests a potential benefit for combining senolytics with immunotherapy in older patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Aged , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Senotherapeutics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Mutation , DNA Methylation
8.
J Alzheimers Dis ; 95(2): 493-507, 2023.
Article in English | MEDLINE | ID: mdl-37545233

ABSTRACT

BACKGROUND: The existence and contribution of microglia with senescent-like alterations in the pathogenesis of age-related neurodegenerative diseases like Alzheimer's disease (AD) have been suggested in recent years. However, the identification of this distinct microglial population in vivo has proven challenging, largely due to overlaps in the inflammatory phenotype of activated and senescent microglia. Furthermore, attempts at recapitulating senescence in microglia in vitro are limited. OBJECTIVE: To identify and characterize senescent microglia that occur in vivo in an animal model of neurodegeneration driven by pathologic tau. METHODS: We analyzed the RNA expression patterns of individual microglia from normal mice and the pathogenic tau P301 S PS19 mouse model. We have previously demonstrated that p16-expressing senescent microglia occur in these mice when neurodegeneration has occurred. RESULTS: Here we identify a subset of disease-associated microglia with senescent features, notably characterized by the expression of Ccl4. This signature overlaps with established markers of senescence from other cell types. CONCLUSION: Our characterization of senescent microglia can be used to better understand the role of senescent microglia in various age-related contexts, including whether clearance of senescent microglia represents a viable therapeutic option.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Alzheimer Disease/pathology , Phenotype , Disease Models, Animal , Mice, Transgenic
9.
Front Psychol ; 14: 1111588, 2023.
Article in English | MEDLINE | ID: mdl-37275712

ABSTRACT

When Open Dialogue diversifies internationally as an approach to mental healthcare, so too do the research methodologies used to describe, explain and evaluate this alternative to existing psychiatric services. This article considers the contribution of anthropology and its core method of ethnography among these approaches. It reviews the methodological opportunities in mental health research opened up by anthropology, and specifically the detailed knowledge about clinical processes and institutional contexts. Such knowledge is important in order to generalize innovations in practice by identifying contextual factors necessary to implementation that are unknowable in advance. The article explains the ethnographic mode of investigation, exploring this in more detail with an account of the method of one anthropological study under way in the UK focused on Peer-Supported Open Dialogue (POD) in the National Health Service (NHS). It sets out the objectives, design and scope of this research study, the varied roles of researchers, the sites of field research and the specific interaction between ethnography and Open Dialogue. This study is original in its design, context, conduct and the kind of data produced, and presents both opportunities and challenges. These are explained in order to raise issues of method that are of wider relevance to Open Dialogue research and anthropology.

10.
Sci Transl Med ; 15(699): eadg7291, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37285401

ABSTRACT

Harnessing the immunogenic potential of senescent cells may be a viable but context-dependent opportunity to boost antitumor immunity.


Subject(s)
Cellular Senescence , Immunity , Neoplasms , Neoplasms/immunology
11.
Cancer Cell ; 41(7): 1261-1275.e6, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37267954

ABSTRACT

Senescent cells play relevant but context-dependent roles during tumorigenesis. Here, in an oncogenic Kras-driven lung cancer mouse model, we found that senescent cells, specifically alveolar macrophages, accumulate early in neoplasia. These macrophages have upregulated expression of p16INK4a and Cxcr1, are distinct from previously defined subsets and are sensitive to senolytic interventions, and suppress cytotoxic T cell responses. Their removal attenuates adenoma development and progression in mice, indicating their tumorigenesis-promoting role. Importantly, we found that alveolar macrophages with these properties increase with normal aging in mouse lung and in human lung adenocarcinoma in situ. Collectively, our study indicates that a subset of tissue-resident macrophages can support neoplastic transformation through altering their local microenvironment, suggesting that therapeutic interventions targeting senescent macrophages may attenuate lung cancer progression during early stages of disease.


Subject(s)
Lung Neoplasms , Macrophages, Alveolar , Mice , Humans , Animals , Macrophages, Alveolar/metabolism , Cellular Senescence , Lung/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Lung Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Tumor Microenvironment
12.
Nat Commun ; 14(1): 2983, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225693

ABSTRACT

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of ß-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


Subject(s)
Carcinogenesis , PTEN Phosphohydrolase , Animals , Humans , Male , Mice , Carcinogenesis/genetics , Homozygote , Mutation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , PTEN Phosphohydrolase/genetics , Phosphorylation
13.
Nat Cell Biol ; 25(6): 800-801, 2023 06.
Article in English | MEDLINE | ID: mdl-37225966
14.
Geroscience ; 45(4): 2559-2587, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37079217

ABSTRACT

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFßR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.


Subject(s)
Aging , Cellular Senescence , Humans , Mice , Animals , Cellular Senescence/genetics , Aging/genetics , Phenotype , Fibroblasts , Machine Learning
15.
FEBS J ; 290(5): 1156-1160, 2023 03.
Article in English | MEDLINE | ID: mdl-36856679

ABSTRACT

The contribution of cellular senescence to a diverse range of biological processes, including normal physiology, ageing, and pathology were long overlooked but have now taken centre stage. In this Editorial, we will briefly outline the review and original work articles contained in The FEBS Journal's Special Issue on Senescence in Ageing and Disease. It is beginning to be appreciated that senescent cells can exert both beneficial and adverse effects following tissue injury. Additionally, while these cells play critical roles for maintaining a healthy physiology, they also promote ageing and certain pathological conditions (including developmental disorders). Progress has been made in re-defining and identifying senescent cells, especially in slow-proliferating or terminally differentiated tissues, such as the brain and cardiovascular system. Novel approaches and techniques for isolating senescent cells will greatly increase our appreciation for senescent properties in tissues. The inter-organ communication between senescent cells and other residents of the tissue microenvironment, via the senescence-associated secretory phenotype (SASP), is a focus of several reviews in this Special Issue. The importance of the SASP in promoting tumour development and the evolution of SARS CoV-2 variants is also highlighted. In one of the two original articles included in the issue, the impact of dietary macronutrients and the presence of senescent cells in mice is investigated. Lastly, we continue to deepen our understanding on the use of senolytics and senomorphics to specifically target senescent cells or their secreted components, respectively, which is discussed in several of the reviews included here.


Subject(s)
COVID-19 , Animals , Mice , Cellular Senescence , Aging , Cell Differentiation , Brain
16.
Mult Scler J Exp Transl Clin ; 9(1): 20552173221142741, 2023.
Article in English | MEDLINE | ID: mdl-36619856

ABSTRACT

Background: Alemtuzumab is an effective therapy for relapsing multiple sclerosis. Autoimmune thyroid events are a common adverse event. Objective: Describe endocrine and multiple sclerosis outcomes over 6 years for alemtuzumab-treated relapsing multiple sclerosis patients in the phase 3 CARE-MS I, II, and extension studies who experienced adverse thyroid events. Methods: Endocrine and multiple sclerosis outcomes were evaluated over 6 years. Thyroid event cases, excluding those pre-existing or occurring after Year 6, were adjudicated retrospectively by expert endocrinologists independently of the sponsor and investigators. Results: Thyroid events were reported for 378/811 (46.6%) alemtuzumab-treated patients. Following adjudication, endocrinologists reached consensus on 286 cases (75.7%). Of these, 39.5% were adjudicated to Graves' disease, 2.5% Hashimoto's disease switching to hyperthyroidism, 15.4% Hashimoto's disease, 4.9% Graves' disease switching to hypothyroidism, 10.1% transient thyroiditis, and 27.6% with uncertain diagnosis; inclusion of anti-thyroid antibody status reduced the number of uncertain diagnoses. Multiple sclerosis outcomes of those with and without thyroid events were similar. Conclusion: Adjudicated thyroid events occurring over 6 years for alemtuzumab-treated relapsing multiple sclerosis patients were primarily autoimmune. Thyroid events were considered manageable and did not affect disease course. Thyroid autoimmunity is a common but manageable adverse event in alemtuzumab-treated relapsing multiple sclerosis patients.ClinicalTrials.gov Registration Numbers: CARE-MS I (NCT00530348); CARE-MS II (NCT00548405); CARE-MS Extension (NCT00930553).

17.
FEBS J ; 290(5): 1326-1339, 2023 03.
Article in English | MEDLINE | ID: mdl-34873840

ABSTRACT

Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.


Subject(s)
Brain , Microglia , Central Nervous System , Cellular Senescence
18.
Mol Metab ; 67: 101652, 2023 01.
Article in English | MEDLINE | ID: mdl-36509362

ABSTRACT

Recent work has established associations between elevated p21, the accumulation of senescent cells, and skeletal muscle dysfunction in mice and humans. Using a mouse model of p21 overexpression (p21OE), we examined if p21 mechanistically contributes to cellular senescence and pathological features in skeletal muscle. We show that p21 induces several core properties of cellular senescence in skeletal muscle, including an altered transcriptome, DNA damage, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). Furthermore, p21OE mice exhibit manifestations of skeletal muscle pathology, such as atrophy, fibrosis, and impaired physical function when compared to age-matched controls. These findings suggest p21 alone is sufficient to drive a cellular senescence program and reveal a novel source of skeletal muscle loss and dysfunction.


Subject(s)
Cellular Senescence , Muscle, Skeletal , Humans , Cellular Senescence/physiology
19.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36538993

ABSTRACT

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Subject(s)
Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , B7-2 Antigen
20.
AIDS Res Hum Retroviruses ; 39(1): 1-12, 2023 01.
Article in English | MEDLINE | ID: mdl-36322713

ABSTRACT

People with HIV on combination antiretroviral therapy (ART) have longer life expectancy and are increasingly experiencing age-related comorbidities. Thus, aging with HIV has become a central issue in clinical care and research, which has been particularly challenging with the intersection of the ongoing coronavirus (COVID)-19 pandemic. Since 2009, the International Workshop on HIV and Aging has served as a multidisciplinary platform to share research findings from cross-disciplinary fields along with community advocates to address critical issues in HIV and aging. In this article, we summarize the key oral presentations from the 12th Annual International Workshop on HIV and Aging, held virtually on September 23rd and 24th, 2021. The topics ranged from basic science research on biological mechanisms of aging to quality of life and delivery of care under the COVID-19 pandemic. This workshop enriched our understanding of HIV and aging under the COVID-19 pandemic, identified challenges and opportunities to combat the impact of COVID-19 on HIV communities, and also provided updated research and future directions of the field to move HIV and aging research forward, with the ultimate goal of successful aging for older people with HIV.


Subject(s)
COVID-19 , HIV Infections , Humans , Aged , HIV Infections/drug therapy , HIV Infections/epidemiology , Pandemics , Quality of Life , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...