Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Exp Neurol ; 382: 114976, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349117

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease of age with no effective preventative or treatment approaches. Deeper understanding of the mechanisms underlying the accumulation of toxic ß-amyloid oligopeptides and the formation of amyloid plaque in AD has the potential to identify new therapeutic targets. Prior research links the insulin-like growth factor (IGF) system to pathologic mechanisms underlying AD. Suppression of local IGF-I receptor (IGFIR) signaling in AD mice has been shown to reduce plaque formation in the brain and delay neurodegeneration and behavioral changes. However, direct inhibitors of IGFIR signaling are not a viable treatment option for AD due to the essentiality of the IGFIR in physiological growth and metabolism. We have previously demonstrated a more selective means to reduce local IGFIR signaling through inhibition of PAPP-A, a novel zinc metalloprotease that regulates local IGF-I bioavailability through cleavage of inhibitory IGF binding proteins. Here we tested if deletion of PAPP-A in a mouse model of AD provides protection against pathology and behavioral changes. We show that compared to AD mice, AD/PAPP-A KO mice had significantly less plaque burden, reduced astrocytic activation, decreased IGF-IR activity, and improved cognition. Human senile AD plaques showed specific immunostaining for PAPP-A. Thus, inhibition of PAPP-A expression or activity may represent a novel treatment strategy for AD.

2.
Cell ; 187(16): 4150-4175, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121846

ABSTRACT

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.


Subject(s)
Cellular Senescence , Humans , Animals , Biomarkers/metabolism , Guidelines as Topic , Neoplasms/pathology
3.
J Cell Sci ; 137(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39155850

ABSTRACT

His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Homeostasis , Lipodystrophy , Protein Tyrosine Phosphatases, Non-Receptor , Signal Transduction , Animals , Mice , Lipodystrophy/metabolism , Lipodystrophy/genetics , Lipodystrophy/pathology , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Cholesterol/metabolism , Lipid Metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Humans , Adipose Tissue, White/metabolism
4.
Article in English | MEDLINE | ID: mdl-38831121

ABSTRACT

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

5.
Biomedicines ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791051

ABSTRACT

Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide. The transcriptomic analysis of senescent MΦ revealed an important inflammatory signature regulated by NFkB. We observed an increased secretion of EVs in senescent MΦ, and these EVs presented an enrichment for ribosomal proteins, major vault protein, pro-inflammatory miRNAs, including miR-21a, miR-155, and miR-132, and several mRNAs. The secretion of senescent MΦ allowed senescent murine embryonic fibroblasts to restart cell proliferation. This antisenescence function of the macrophage secretome may explain their pro-tumorigenic activity and suggest that senolytic treatment to eliminate senescent MΦ could potentially prevent these deleterious effects.

6.
J Alzheimers Dis ; 98(3): 925-940, 2024.
Article in English | MEDLINE | ID: mdl-38517786

ABSTRACT

Background: Caloric restriction (CR) has been recognized for its benefits in delaying age-related diseases and extending lifespan. While its effects on amyloid pathology in Alzheimer's disease (AD) mouse models are well-documented, its effects on tauopathy, another hallmark of AD, are less explored. Objective: To assess the impact of a short-term 30% CR regimen on age-dependent spatial learning deficits and pathological features in a tauopathy mouse model. Methods: We subjected male PS19 tau P301S (hereafter PS19) and age-matched wildtype mice from two age cohorts (4.5 and 7.5 months old) to a 6-week 30% CR regimen. Spatial learning performance was assessed using the Barnes Maze test. Tau pathology, neuroinflammation, hippocampal cell proliferation, and neurogenesis were evaluated in the older cohort by immunohistochemical staining and RT-qPCR. Results: CR mitigated age-dependent spatial learning deficits in PS19 mice but exhibited limited effects on tau pathology and the associated neuroinflammation. Additionally, we found a decrease in hippocampal cell proliferation, predominantly of Iba1+ cells. Conclusions: Our findings reinforce the cognitive benefits conferred by CR despite its limited modulation of disease pathology. Given the pivotal role of microglia in tau-driven pathology, the observed reduction in Iba1+ cells under CR suggests potential therapeutic implications, particularly if CR would be introduced early in disease progression.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Male , Humans , Animals , tau Proteins/genetics , tau Proteins/pharmacology , Spatial Learning , Mice, Transgenic , Caloric Restriction , Neuroinflammatory Diseases , Alzheimer Disease/pathology , Tauopathies/pathology , Maze Learning , Disease Models, Animal
7.
J Alzheimers Dis ; 97(4): 1751-1763, 2024.
Article in English | MEDLINE | ID: mdl-38306030

ABSTRACT

Background: Cellular senescence has been associated with neurodegenerative disease and clearance of senescent cells using genetic or pharmaceutical strategies (senolytics) has demonstrated beneficial effects in mouse models investigating individual disease etiologies of Alzheimer's disease (AD). However, it has remained unclear if senescent cell clearance in a mouse model exhibiting both plaque and tau pathologies modifies the disease state (3xTg). Objective: To investigate the effects of senescent cell clearance in the 3xTg mouse model. Methods: 3xTg mice were treated with senolytics (ABT263 (navitoclax; NAVI), a combination of dasatinib and quercetin (D+Q)), or subjected to transgene-mediated removal of p16-expressing cells (via INK-ATTAC). Results: Senolytic treatments consistently reduced microgliosis and ameliorated both amyloid and tau pathology in 3xTg mice. Using RNA sequencing, we found evidence that synaptic dysfunction and neuroinflammation were attenuated with treatment. These beneficial effects were not observed with short-term senolytic treatment in mice with more advanced disease. Conclusions: Overall, our results further corroborate the beneficial effects senescent cell clearance could have on AD and highlight the importance of early intervention for the treatment of this debilitating disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/pathology , Neurodegenerative Diseases/complications , Senotherapeutics , Mice, Transgenic , Cellular Senescence , Disease Models, Animal , tau Proteins/genetics , tau Proteins/pharmacology
8.
Psychosom Med ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37910129

ABSTRACT

OBJECTIVE: Despite advances toward understanding the etiology of Alzheimer's disease (AD), it remains unclear which aspects of this disease are affected by environmental factors. Chronic life stress increases risk for aging-related diseases including AD. The impact of stress on tauopathies remains understudied. We examined the effects of stress elicited by social (chronic subordination stress, CSS) or psychological/physical (chronic restraint stress, CRS) factors - on the PS19 mouse model of tauopathy. METHODS: Male PS19 mice (average age 6.3 months) were randomized to receive CSS, CRS, or to remain as singly-housed controls. Behavioral tests were used to assess anxiety-like behaviors and cognitive functions. Immunofluorescence staining and western blotting analysis were used to measure levels of astrogliosis, microgliosis and tau burden. Immunohistochemistry was used to assess glucocorticoid receptor expression. RESULTS: PS19 mice exhibit neuroinflammation (GFAP, t-tests; p = 0.0297; Iba1, t-tests; p = 0.006) and tau hyperphosphorylation (t-test, p = 0.0446) in the hippocampus, reduced anxiety (post hoc, p = 0.046), and cognitive deficits, when compared to wild type mice. Surprisingly, CRS reduced hippocampal levels of both total tau and phospho-tauS404 (t-test, p = 0.0116), and attenuated some aspects of both astrogliosis and microgliosis in PS19 mice (t-tests, p = 0.068 to p = 0.0003); however, this was not associated with significant changes in neurodegeneration or cognitive function. Anxiety-like behaviors were increased by CRS (post hoc, p = 0.046). Conversely, CSS impaired spatial learning in Barnes Maze without impacting tau phosphorylation or neurodegeneration and having a minimal impact on gliosis. CONCLUSIONS: Our results demonstrate that social or psychological stress can differentially impact anxiety-like behavior, select cognitive functions, and some aspects of tau-dependent pathology in PS19 male mice, providing entry points for the development of experimental approaches designed to slow AD progression.

9.
NPJ Precis Oncol ; 7(1): 126, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030881

ABSTRACT

High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.

10.
Clin Cancer Res ; 29(23): 4973-4989, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37725593

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common aggressive primary malignant brain tumor in adults with a median age of onset of 68 to 70 years old. Although advanced age is often associated with poorer GBM patient survival, the predominant source(s) of maladaptive aging effects remains to be established. Here, we studied intratumoral and extratumoral relationships between adult patients with GBM and mice with brain tumors across the lifespan. EXPERIMENTAL DESIGN: Electronic health records at Northwestern Medicine and the NCI SEER databases were evaluated for GBM patient age and overall survival. The commercial Tempus and Caris databases, as well as The Cancer Genome Atlas were profiled for gene expression, DNA methylation, and mutational changes with varying GBM patient age. In addition, gene expression analysis was performed on the extratumoral brain of younger and older adult mice with or without a brain tumor. The survival of young and old wild-type or transgenic (INK-ATTAC) mice with a brain tumor was evaluated after treatment with or without senolytics and/or immunotherapy. RESULTS: Human patients with GBM ≥65 years of age had a significantly decreased survival compared with their younger counterparts. While the intra-GBM molecular profiles were similar between younger and older patients with GBM, non-tumor brain tissue had a significantly different gene expression profile between young and old mice with a brain tumor and the eradication of senescent cells improved immunotherapy-dependent survival of old but not young mice. CONCLUSIONS: This work suggests a potential benefit for combining senolytics with immunotherapy in older patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Aged , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Senotherapeutics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Mutation , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL