Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
medRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38952781

ABSTRACT

Background: The immunometabolic mechanisms underlying variable responses to oral immunotherapy (OIT) in patients with IgE-mediated food allergy are unknown. Objective: To identify novel pathways associated with tolerance in food allergy, we used metabolomic profiling to find pathways important for food allergy in multi-ethnic cohorts and responses to OIT. Methods: Untargeted plasma metabolomics data were generated from the VDAART healthy infant cohort (N=384), a Costa Rican cohort of children with asthma (N=1040), and a peanut OIT trial (N=20) evaluating sustained unresponsiveness (SU, protection that lasts after therapy) versus transient desensitization (TD, protection that ends immediately afterwards). Generalized linear regression modeling and pathway enrichment analysis identified metabolites associated with food allergy and OIT outcomes. Results: Compared with unaffected children, those with food allergy were more likely to have metabolomic profiles with altered histidines and increased bile acids. Eicosanoids (e.g., arachidonic acid derivatives) (q=2.4×10 -20 ) and linoleic acid derivatives (q=3.8×10 -5 ) pathways decreased over time on OIT. Comparing SU versus TD revealed differing concentrations of bile acids (q=4.1×10 -8 ), eicosanoids (q=7.9×10 -7 ), and histidine pathways (q=0.015). In particular, the bile acid lithocholate (4.97[1.93,16.14], p=0.0027), the eicosanoid leukotriene B4 (3.21[1.38,8.38], p=0.01), and the histidine metabolite urocanic acid (22.13[3.98,194.67], p=0.0015) were higher in SU. Conclusions: We observed distinct profiles of bile acids, histidines, and eicosanoids that vary among patients with food allergy, over time on OIT and between SU and TD. Participants with SU had higher levels of metabolites such as lithocholate and urocanic acid, which have immunomodulatory roles in key T-cell subsets, suggesting potential mechanisms of tolerance in immunotherapy. Key Messages: - Compared with unaffected controls, children with food allergy demonstrated higher levels of bile acids and distinct histidine/urocanic acid profiles, suggesting a potential role of these metabolites in food allergy. - In participants receiving oral immunotherapy for food allergy, those who were able to maintain tolerance-even after stopping therapyhad lower overall levels of bile acid and histidine metabolites, with the exception of lithocholic acid and urocanic acid, two metabolites that have roles in T cell differentiation that may increase the likelihood of remission in immunotherapy. Capsule summary: This is the first study of plasma metabolomic profiles of responses to OIT in individuals with IgE-mediated food allergy. Identification of immunomodulatory metabolites in allergic tolerance may help identify mechanisms of tolerance and guide future therapeutic development.

2.
Biophys J ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030907

ABSTRACT

The significant effects of lipid binding on the functionality of potassium channel KcsA have been validated by brilliant studies. However, the specific interactions between lipids and KcsA, such as binding parameters for each binding event, have not been fully elucidated. In this study, we employed native mass spectrometry to investigate the binding of lipids to KcsA and their effects on the channel. The tetrameric structure of KcsA remains intact even in the absence of lipid binding. However, the subunit architecture of the E71A mutant, which is constantly open at low pH, relies on tightly associated copurified lipids. Furthermore, we observed that lipids exhibit weak binding to KcsA at high pH when the channel is at a closed/inactivation state in the absence of permeant cation K+. This feeble interaction potentially facilitates the association of K+ ions, leading to the transition of the channel to a resting closed/open state. Interestingly, both anionic and zwitterionic lipids strongly bind to KcsA at low pH when the channel is in an open/inactivation state. We also investigated the binding patterns of KcsA with natural lipids derived from E. coli and Streptomyces lividans. Interestingly, lipids from E. coli exhibited much stronger binding affinity compared to the lipids from S. lividans. Among the natural lipids from S. lividans, free fatty acids and triacylglycerols demonstrated the tightest binding to KcsA, whereas no detectable binding events were observed with natural phosphatidic acid lipids. These findings suggest that the lipid association pattern in S. lividans, the natural host for KcsA, warrants further investigation. In conclusion, our study sheds light on the role of lipids in stabilizing KcsA and highlights the importance of specific lipid-protein interactions in modulating its conformational states.

3.
Surgery ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971698

ABSTRACT

BACKGROUND: Microwave ablation is becoming increasingly common for the treatment of liver tumors. Despite numerous studies aimed at identifying risk factors for local recurrence after microwave ablation, a consensus on modifiable risk factors for failure remains elusive, partly because of the limited statistical power of these studies. This study investigated the incidence of technical failure after microwave ablation, encompassing both incomplete ablation and local recurrence, and aimed to identify modifiable factors that reduce technical failure. METHODS: This retrospective review included patients who underwent surgical microwave ablation at a high-volume institution between October 2006 and March 2023. Univariate analysis, multivariate analysis, and propensity score matching were performed to identify risk factors for technical failure. RESULTS: A total of 1,613 surgical microwave ablations were performed on 3,035 tumors, with 226 instances (14% per procedure, 7.4% per tumor) of technical failure. Incomplete ablation occurred at a rate of 1.7% per tumor, whereas local recurrence was identified in 6.5% of ablations in per-tumor analysis. Body mass index >25 was significant for failure (odds ratio, 1.50; 95% confidence interval, 1.07-2.11; P < .05), suggesting that more difficult targeting may lead to increased technical failure rates. African American race (odds ratio, 1.62; 95% confidence interval, 1.16-2.27; P < .05), pre-microwave ablation transarterial chemoembolization (odds ratio, 1.54; 95% confidence interval, 1.08-2.21; P < .05), and previous ablation (odds ratio, 1.58; 95% confidence interval, 1.09-2.29; P < .05) were found to be statistically significant. CONCLUSION: On the basis of the largest microwave ablation database available to date, this study identified novel modifiable and nonmodifiable risk factors of microwave ablation failure. These results can lead to decreasing technical failure rates after microwave ablation.

4.
Environ Sci Technol ; 58(32): 14486-14495, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39066709

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. Fish consumption has been identified as a key route of PFAS exposure for humans. However, routine fish monitoring targets only a handful of PFAS, and non-targeted analyses have largely only evaluated fish from heavily PFAS-impacted waters. Here, we evaluated PFAS in fish fillets from recreational and drinking water sources in central North Carolina to assess whether PFAS are present in these fillets that would not be detected by conventional targeted methods. We used liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to collect full scan feature data, performed suspect screening using an in-house library of 100 PFAS for high confidence feature identification, searched for additional PFAS features using non-targeted data analyses, and quantified perfluorooctanesulfonic acid (PFOS) in the fillet samples. A total of 36 PFAS were detected in the fish fillets, including 19 that would not be detected using common targeted methods, with a minimum of 6 and a maximum of 22 in individual fish. Median fillet PFOS levels were concerningly high at 11.6 to 42.3 ppb, and no significant correlation between PFOS levels and number of PFAS per fish was observed. Future PFAS monitoring in this region should target more of these 36 PFAS, and other regions not considered heavily PFAS contaminated should consider incorporating non-targeted analyses into ongoing fish monitoring studies.


Subject(s)
Fishes , Water Pollutants, Chemical , Animals , Fishes/metabolism , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , North Carolina , Chromatography, Liquid , Environmental Monitoring , Alkanesulfonic Acids/analysis
5.
bioRxiv ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38979258

ABSTRACT

Senescence emerged as a significant mechanism of aging and age-related diseases, offering an attractive target for clinical interventions. Senescent cells release a senescence-associated secretory phenotype (SASP), including exosomes that may act as signal transducers between distal tissues, propagating secondary or bystander senescence and signaling throughout the body. However, the composition of exosome SASP remains underexplored, presenting an opportunity for novel unbiased discovery. Here, we present a detailed proteomic and lipidomic analysis of exosome SASP using mass spectrometry from human plasma from young and older individuals and from tissue culture of senescent primary human lung fibroblasts. We identified ~1,300 exosome proteins released by senescent fibroblasts induced by three different senescence inducers causing most exosome proteins to be differentially regulated with senescence. In parallel, a human plasma cohort from young and old individuals revealed over 1,350 exosome proteins and 171 plasma exosome proteins were regulated when comparing old vs young individuals. Of the age-regulated plasma exosome proteins, we observed 52 exosome SASP factors that were also regulated in exosomes from the senescent fibroblasts, including serine protease inhibitors (SERPINs), Prothrombin, Coagulation factor V, Plasminogen, and Reelin. In addition, 247 lipids were identified with high confidence in all exosome samples. Following the senescence inducers, a majority of the identified phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin species increased significantly indicating cellular membrane changes. The most notable categories of significantly changed proteins were related to extracellular matrix remodeling and inflammation, both potentially detrimental pathways that can damage surrounding tissues and even induce secondary or bystander senescence. Our findings reveal mechanistic insights and potential senescence biomarkers, enabling a better approach to surveilling the senescence burden in the aging population and offering promising therapeutic targets for interventions.

6.
Sci Total Environ ; 947: 174574, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38981548

ABSTRACT

Detection and monitoring of per- and polyfluoroalkyl substances (PFAS) in aquatic environments has become an increasingly higher priority of regulatory agencies as public concern for human intake of these chemicals continues to grow. While many methods utilize active sampling strategies ("grab samples") for precise PFAS quantitation, here we evaluate the efficacy of low-cost passive sampling devices (Solid Phase Adsorption Toxin Tracking, or SPATTs) for spatial and temporal PFAS assessment of aquatic systems. For this study, passive samplers were initially deployed in North Carolina along the Cape Fear River during the summer and fall of 2016 and 2017. These were originally intended for the detection of microcystins and monitoring potentially harmful algal blooms, though this period also coincided with occurrences of PFAS discharge from a local fluorochemical manufacturer into the river. Additional samplers were then deployed in 2022 to evaluate changes in PFAS fingerprint and abundances. Assessment of PFAS showed legacy compounds were observed across almost all sampling sites over all 3 years (PFHxS, PFOS, PFHxA, etc.), while emerging replacement PFAS (e.g., Nafion byproducts) were predominantly localized downstream from the manufacturer. Furthermore, samplers deployed downstream from the manufacturer in 2022 noted sharp decreases in observed signal for replacement PFAS in comparison to samplers deployed in 2016 and 2017, indicating mitigation and remediation efforts in the area were able to reduce localized fluorochemical contamination.


Subject(s)
Environmental Monitoring , Fluorocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , North Carolina , Ion Mobility Spectrometry/methods , Rivers/chemistry , Mass Spectrometry/methods , Adsorption
8.
Toxics ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38922083

ABSTRACT

A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis. All samples were processed using weak anion exchange (WAX) solid phase extraction and analyzed using a non-targeted suspect screening approach as well as a quantitative approach that included a panel of 45 PFAS analytes, several of which are specific to chemical industries near the collection site locations. The non-targeted approach, which utilized a suspect screening list (obtained from EPA CompTox database) identified several PFAS compounds at a level two confidence rating (Schymanski scale); compounds identified included a fluorinated insecticide, a fluorinated herbicide, a PFAS used in polymer chemistry, and another that is used in battery production. Notably, at several locations, PFOA (39.8 ng/L) and PFOS (205.3 ng/L) were at levels that exceeded the mandatory EPA maximum contaminant level (MCL) of 4 ng/L. Additionally, several sites had detectable levels of PFAS that are unique to a local chemical manufacturer. These findings were communicated back to the community partners who then disseminated this information to the local residents to help empower and aid in making decisions for reducing their PFAS exposure.

9.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766156

ABSTRACT

Domoic acid is a neurotoxin secreted by the marine diatom genus, Pseudo-nitzschia, during toxic algal bloom events. California sea lions ( Zalophus californianus ) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses. SYNOPSIS: Multi-omics evaluations reveal blood apolipoproteins and triglycerides are altered in domoic acid toxicosis in California sea lions.

10.
Dev Psychopathol ; : 1-12, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774991

ABSTRACT

The moral self-concept (MSC) describes how children view themselves as moral agents. Research suggests that the MSC may relate to moral behavior, yet little is known about how MSC relates to moral behavior in preschoolers. One hundred six low-income children (M age = 52.78 months, SD = 6.61 months) and their teachers participated in this study. In the fall, children completed a MSC puppet task measure. In the fall and spring, teachers reported via children's survey prosocial behavior and aggressive behavior. We used a person-centered approach to identify profiles of MSC, which revealed two profiles of behavior: comforting prosocials and helpful aggressors. Comforting prosocials showed a moderate preference for comforting, a slight preference for helping, and a slight preference for avoiding aggression. Helpful aggressors had a moderate aversion to comforting, a strong preference for helping, and a slight preference for aggressive behavior. Subsequent analysis of covariance analysis revealed that MSC profiles did not differ in concurrent behavior but did differ in behavior 6 months later. The comforting prosocial group participated in more aggression than the helpful aggressors. Additionally, analysis of covariance analysis of change in aggression scores over time showed that comforting prosocials aggression increased, while helpful aggressors aggression decreased. Both groups over time decreased in prosocial behavior, but to different degrees. Overall, findings reveal that the MSC in preschoolers may relate to future not concurrent moral behavior.

11.
J Surg Oncol ; 130(1): 93-101, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38712939

ABSTRACT

BACKGROUND AND OBJECTIVES: Deep learning models (DLMs) are applied across domains of health sciences to generate meaningful predictions. DLMs make use of neural networks to generate predictions from discrete data inputs. This study employs DLM on prechemotherapy cross-sectional imaging to predict patients' response to neoadjuvant chemotherapy. METHODS: Adult patients with colorectal liver metastasis who underwent surgery after neoadjuvant chemotherapy were included. A DLM was trained on computed tomography images using attention-based multiple-instance learning. A logistic regression model incorporating clinical parameters of the Fong clinical risk score was used for comparison. Both model performances were benchmarked against the Response Evaluation Criteria in Solid Tumors criteria. A receiver operating curve was created and resulting area under the curve (AUC) was determined. RESULTS: Ninety-five patients were included, with 33,619 images available for study inclusion. Ninety-five percent of patients underwent 5-fluorouracil-based chemotherapy with oxaliplatin and/or irinotecan. Sixty percent of the patients were categorized as chemotherapy responders (30% reduction in tumor diameter). The DLM had an AUC of 0.77. The AUC for the clinical model was 0.41. CONCLUSIONS: Image-based DLM for prediction of response to neoadjuvant chemotherapy in patients with colorectal cancer liver metastases was superior to a clinical-based model. These results demonstrate potential to identify nonresponders to chemotherapy and guide select patients toward earlier curative resection.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Deep Learning , Liver Neoplasms , Neoadjuvant Therapy , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/surgery , Male , Female , Middle Aged , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Tomography, X-Ray Computed , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Chemotherapy, Adjuvant , Oxaliplatin/administration & dosage , Oxaliplatin/therapeutic use , Adult , Follow-Up Studies , Retrospective Studies
13.
Anal Bioanal Chem ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814344

ABSTRACT

The importance of lipids in biology continues to grow with their recent linkages to more diseases and conditions, microbiome fluctuations, and environmental exposures. These associations have motivated researchers to evaluate lipidomic changes in numerous matrices and studies. Lipidomic analyses, however, present numerous challenges as lipid species have broad chemistries that require different extraction methods and instrumental analyses to evaluate and separate their many isomers and isobars. Increasing knowledge about different lipid characteristics is therefore crucial for improving their separation and identification. Here, we present a multidimensional database for lipids analyzed on a platform combining reversed-phase liquid chromatography, drift tube ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (RPLC-DTIMS-CID-MS). This platform and the different separation characteristics it provides enables more confident lipid annotations when compared to traditional tandem mass spectrometry platforms, especially when analyzing highly isomeric molecules such as lipids. This database expands on our previous publication containing only human plasma and bronchoalveolar lavage fluid lipids and provides experimental RPLC retention times, IMS collision cross section (CCS) values, and m/z information for 877 unique lipids from additional biofluids and tissues. Specifically, the database contains 1504 precursor [M + H]+, [M + NH4]+, [M + Na]+, [M-H]-, [M-2H]2-, [M + HCOO]-, and [M + CH3COO]- ion species and their associated CID fragments which are commonly targeted in clinical and environmental studies, in addition to being present in the chloroform layer of Folch extractions. Furthermore, this multidimensional RPLC-DTIMS-CID-MS database spans 5 lipid categories (fatty acids, sterols, sphingolipids, glycerolipids, and glycerophospholipids) and 24 lipid classes. We have also created a webpage (tarheels.live/bakerlab/databases/) to enhance the accessibility of this resource which will be populated regularly with new lipids as we identify additional species and integrate novel standards.

14.
J Am Coll Surg ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651746

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common cause of cancer mortality worldwide. Of these, approximately 25% will have liver metastasis. We performed 394 microwave ablations (MWA) and analyzed outcomes for survival and ablation failure. STUDY DESIGN: Retrospective review of patients who underwent a surgical microwave ablation at a single center high-volume institution from October 2006 through September 2022 using a prospectively maintained database. Primary outcome was overall survival. RESULTS: A total of 394 operations were performed on 328 patients with 842 tumors undergoing MWA. Median tumor size was 1.5 cm (range 0.4-7.0 cm), with the median number of tumors ablated per operation being 1 (range 1-11). A laparoscopic approach was used 77.9% of the time. Concomitant procedures were performed 63% of the time, most commonly hepatectomy (22.3%), cholecystectomy (17.5%), and colectomy (6.6%). Clavien-Dindo Grade III or IV complications occurred in 12 patients (3.6%), and all of these patients had undergone concomitant procedures. Mortality within 30 days occurred in 4 patients (1.2%). The rate of incomplete ablation (IA) was 1.5% per tumor. Local recurrence (LR) occurred at a rate of 6.3% per tumor. African Americans were found to have a higher incidence of IA and LR. One year survival probability was 91% [95% CI: 87.9 -94.3], with a mean overall survival of 57.6 months [95% CI: 49.9-65.4 months]. CONCLUSION: Surgical MWA offers a low-morbidity approach to treatment of colorectal liver metastasis (CRLM), with low rates of failure. This large series reviews the outcomes of MWA as definitive treatment for CRLM.

15.
Chemosphere ; 354: 141654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462188

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.


Subject(s)
Alkanesulfonic Acids , Fluorocarbon Polymers , Fluorocarbons , Propionates , Male , Female , Mice , Animals , Lipidomics , Mice, Inbred C57BL , Fluorocarbons/analysis , Liver/metabolism , Alkanesulfonic Acids/metabolism
16.
Neurobiol Dis ; 194: 106470, 2024 May.
Article in English | MEDLINE | ID: mdl-38485094

ABSTRACT

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described altered sensitivity and cooperativity of the voltage sensor and impaired capacity for repetitive firing of neurons. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Consistent with the in vitro studies, neurons from Kcnb1R306C mice showed altered excitability. Heterozygous and homozygous R306C mice exhibited hyperactivity, altered susceptibility to chemoconvulsant-induced seizures, and frequent, long runs of slow spike wave discharges on EEG, reminiscent of the slow spike and wave activity characteristic of Lennox Gastaut syndrome. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , Epilepsy , Animals , Mice , Autism Spectrum Disorder/pathology , Brain Diseases/pathology , Epilepsy/pathology , Mutation , Phenotype , Seizures
17.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370838

ABSTRACT

Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.

18.
J Proteome Res ; 23(8): 2970-2985, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38236019

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Genotype , Lipidomics , Proteomics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Proteomics/methods , Female , Male , Aged , Apolipoproteins E/genetics , Brain/metabolism , Brain/pathology , Aged, 80 and over , Apolipoprotein E4/genetics , Cerebellum/metabolism , Cerebellum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Alleles
19.
Anal Bioanal Chem ; 416(9): 2189-2202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37875675

ABSTRACT

The goal of lipidomic studies is to provide a broad characterization of cellular lipids present and changing in a sample of interest. Recent lipidomic research has significantly contributed to revealing the multifaceted roles that lipids play in fundamental cellular processes, including signaling, energy storage, and structural support. Furthermore, these findings have shed light on how lipids dynamically respond to various perturbations. Continued advancement in analytical techniques has also led to improved abilities to detect and identify novel lipid species, resulting in increasingly large datasets. Statistical analysis of these datasets can be challenging not only because of their vast size, but also because of the highly correlated data structure that exists due to many lipids belonging to the same metabolic or regulatory pathways. Interpretation of these lipidomic datasets is also hindered by a lack of current biological knowledge for the individual lipids. These limitations can therefore make lipidomic data analysis a daunting task. To address these difficulties and shed light on opportunities and also weaknesses in current tools, we have assembled this review. Here, we illustrate common statistical approaches for finding patterns in lipidomic datasets, including univariate hypothesis testing, unsupervised clustering, supervised classification modeling, and deep learning approaches. We then describe various bioinformatic tools often used to biologically contextualize results of interest. Overall, this review provides a framework for guiding lipidomic data analysis to promote a greater assessment of lipidomic results, while understanding potential advantages and weaknesses along the way.


Subject(s)
Lipidomics , Lipids , Lipids/analysis , Big Data , Lipid Metabolism , Computational Biology/methods
20.
Nature ; 626(7998): 419-426, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052229

ABSTRACT

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Subject(s)
Amides , Bile Acids and Salts , Esters , Fatty Acids , Metabolomics , Animals , Humans , Bifidobacterium/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Clostridium/metabolism , Cohort Studies , Crohn Disease/metabolism , Enterococcus/metabolism , Esters/chemistry , Esters/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Inflammatory Bowel Diseases/metabolism , Metabolomics/methods , Phenotype , Pregnane X Receptor/metabolism , Reproducibility of Results , Tandem Mass Spectrometry , Amides/chemistry , Amides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL