Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cureus ; 14(8): e28606, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36185932

ABSTRACT

Objective To improve the efficiency of frame-based and frameless Gamma Knife® Icon™ (GKI) treatments by analyzing the workflows of both treatment approaches and identifying steps that lead to prolonged patient in-clinic or treatment time. Methods The treatment processes of 57 GKI patients, 16 frame-based and 41 frameless cases were recorded and analyzed. For frame-based treatments, time points were recorded for various steps in the process, including check-in, magnetic resonance imaging (MRI) completion, plan approval, and treatment start/end times. The time required for completing each step was calculated and investigated. For frameless treatments, the actual and planned treatment times were compared to evaluate the patient tolerance of the treatment. In addition, the time spent on room cleaning and preparation between treatments was also recorded and analyzed. Results For frame-based cases, the average in-clinic time was 6.3 hours (ranging from 4 to 8.7 hours). The average time from patient check-in to plan approval was 4.2 hours (ranging from 2.8 to 5.5 hours), during which the frame was placed, stereotactic reference MRI images were taken, target volumes were contoured, and the treatment plan was developed and second-checked. For patients immobilized with a mask, treatment pauses triggered by the intra-fractional motion monitoring system resulted in a significantly longer actual treatment time than the planned time. In 50 (or 55%) of the 91 frameless treatments, the patient on-table time was longer than the planned treatment time by more than 10 minutes, and in 19 (or 21%) of the treatments the time difference was larger than 20 minutes. Major treatment interruptions, defined as pauses leading to a longer than 10-minute delay, were more commonly encountered in patients with a planned treatment time longer than 40 minutes, which accounted for 64% of the recorded major interruptions. Conclusion For frame-based cases, the multiple pretreatment steps (from patient check-in to plan approval) in the workflow were time-consuming and resulted in prolonged patient in-clinic time. These pretreatment steps may be shortened by performing some of these steps before the treatment day, e.g., pre-planning the treatment using diagnostic MRI scans acquired a few days earlier. For frameless patients, we found that a longer planned treatment time is associated with a higher chance of treatment interruption. For patients with a long treatment time, a planned break or consideration of fractionated treatments (i.e., 3 to 5 fractionated stereotactic radiosurgery) may optimize the workflow and improve patient satisfaction.

2.
J Appl Clin Med Phys ; 23(6): e13640, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35536772

ABSTRACT

Plan checks are important components of a robust quality assurance (QA) program. Recently, the American Association of Physicists in Medicine (AAPM) published two reports concerning plan and chart checking, Task Group (TG) 275 and Medical Physics Practice Guideline (MPPG) 11.A. The purpose of the current study was to crosswalk initial plan check failure modes revealed in TG 275 against our institutional QA program and local incident reporting data. Ten physicists reviewed 46 high-risk failure modes reported in Table S1.A.i of the TG 275 report. The committee identified steps in our planning process which sufficiently checked each failure mode. Failure modes that were not covered were noted for follow-up. A multidisciplinary committee reviewed the narratives of 1599 locally-reported incidents in our Radiation Oncology Incident Learning System (ROILS) database and categorized each into the high-risk TG 275 failure modes. We found that over half of the 46 high-risk failure modes, six of which were top-ten failure modes, were covered in part by daily contouring peer-review rounds, upstream of the traditional initial plan check. Five failure modes were not adequately covered, three of which concerned pregnancy, pacemakers, and prior dose. Of the 1599 incidents analyzed, 710 were germane to the initial plan check, 23.4% of which concerned missing pregnancy attestations. Most, however, were caught prior to CT simulation (98.8%). Physics review and initial plan check were the least efficacious checks, with error detection rates of 31.8% and 31.3%, respectively, for some failure modes. Our QA process that includes daily contouring rounds resulted in increased upstream error detection. This work has led to several initiatives in the department, including increased automation and enhancement of several policies and procedures. With TG 275 and MPPG 11.A as a guide, we strongly recommend that departments consider an internal chart checking policy and procedure review.


Subject(s)
Radiation Oncology , Radiotherapy Planning, Computer-Assisted , Automation , Humans , Physics , Radiotherapy Planning, Computer-Assisted/methods , Risk Management/methods
3.
J Appl Clin Med Phys ; 21(9): 259-265, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32652862

ABSTRACT

The SARS-CoV-2 coronavirus pandemic has spread around the world including the United States. New York State has been hardest hit by the virus with over 380 000 citizens with confirmed COVID-19, the illness associated with the SARS-CoV-2 virus. At our institution, the medical physics and dosimetry group developed a pandemic preparedness plan to ensure continued operation of our service. Actions taken included launching remote access to clinical systems for all dosimetrists and physicists, establishing lines of communication among staff members, and altering coverage schedules to limit on-site presence and decrease risk of infection. The preparedness plan was activated March 23, 2020, and data were collected on treatment planning and chart checking efficiency for 6 weeks. External beam patient load decreased by 25% during the COVID-19 crisis, and special procedures were almost entirely eliminated excepting urgent stereotactic radiosurgery or brachytherapy. Efficiency of treatment planning and chart checking was slightly better than a comparable 6-week interval in 2019. This is most likely due to decreased patient load: Fewer plans to generate and more physicists available for checking without special procedure coverage. Physicists and dosimetrists completed a survey about their experience during the crisis and responded positively about the preparedness plan and their altered work arrangements, though technical problems and connectivity issues made the transition to remote work difficult. Overall, the medical physics and dosimetry group successfully maintained high-quality, efficient care while minimizing risk to the staff by minimizing on-site presence. Currently, the number of COVID-19 cases in our area is decreasing, but the preparedness plan has demonstrated efficacy, and we will be ready to activate the plan should COVID-19 return or an unknown virus manifest in the future.


Subject(s)
Betacoronavirus/isolation & purification , Civil Defense/organization & administration , Coronavirus Infections/epidemiology , Health Physics/organization & administration , Pneumonia, Viral/epidemiology , Practice Guidelines as Topic/standards , Quality Assurance, Health Care , Radiometry/methods , COVID-19 , Civil Defense/standards , Coronavirus Infections/therapy , Coronavirus Infections/virology , Health Physics/standards , Humans , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , United States/epidemiology
4.
J Appl Clin Med Phys ; 21(9): 71-81, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32627294

ABSTRACT

To evaluate the clinical feasibility and dosimetric benefits of a novel gantry-static couch-motion (GsCM) technique for external beam photon boost treatment of lumpectomy cavity in patients with early-stage breast cancer in comparison to three-dimensional conformal radiotherapy (3D-CRT), wedge pair in supine position (WPS), and wedge pair in decubitus position (WPD) techniques. A retrospective review was conducted on breast patients (right breast, n = 10 and left breast, n = 10) who received 10 Gy boost after 50 Gy to whole breast. The treatment plans were generated using an isocentric-based GsCM technique (a VMAT type planning approach) integrating couch rotational motion at static gantry positions. Static fields for each tangential side were merged using a Matlab® script and delivered automatically within the Varian TruebeamTM STx in Developer Mode application as a VMAT arc (wide-angular medial and short-angular lateral arcs). The dosimetric accuracy of the plan delivery was evaluated by ion chamber array measurements in phantom. For both right and left breast boost GsCM, 3D-CRT, WPS, and WPD all provided an adequate coverage to PTV. GsCM significantly reduced the ipsilateral lung V30% for right side (mean, 80%) and left side (mean, 70%). Heart V5% reduced by 90% (mean) for right and 80% (mean) for left side. Ipsilateral breast V50% and mean dose were comparable for all techniques but for GsCM, V100% reduced by 50% (mean) for right and left side. The automated delivery of both arcs was under 2 min as compared to delivering individual fields (30 ± 5 min). The gamma analysis using 2 mm distance to agreement (DTA) and 2% dose difference (DD) was 98 ± 1.5% for all 20 plans. The GsCM technique facilitates coronal plane dose delivery appropriate for deep-seated breast boost cavities, with sufficient dose conformity of target volume paired with sparing of the OARs.


Subject(s)
Breast Neoplasms , Radiotherapy, Intensity-Modulated , Breast , Breast Neoplasms/radiotherapy , Female , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
5.
Sci Rep ; 9(1): 1198, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718607

ABSTRACT

Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method's dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM's low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries.


Subject(s)
Radiotherapy/methods , Brain Neoplasms/surgery , Computer Simulation , Gold , Humans , Metal Nanoparticles , Models, Biological , Monte Carlo Method , Radiography/methods , Radiometry/methods , Radiosurgery/methods , Radiotherapy Dosage , X-Ray Therapy/methods , X-Rays
6.
Int J Radiat Oncol Biol Phys ; 101(5): 1027-1028, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30012521
SELECTION OF CITATIONS
SEARCH DETAIL
...