Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135469

ABSTRACT

Alternative agronomic practices are needed to address the various climatic, agronomic, edaphic, and water quality related challenges faced by the dairy farmers of the Driftless Area (DA) in the Upper Mississippi River Basin (UMRB). These practices should be innovative in nature, inclusive of regional stakeholders, and sustainable to meet the future food and climate related challenges of Wisconsin agriculture. Here, we outline our Integrated (grazing and cropland) Long-Term Agroecosystem Research Common Experiment at the University of Wisconsin-Platteville Pioneer Farm (UW-P PF) in the UMRB and describe our collaboration in this USDA network. In this field-scale experiment, we are comparing the conventional dairy production system common to this region (i.e., corn-on-corn [Zea mays L.] for 4 years, followed by alfalfa [Medicago sativa L.] for 3 years, with no cover crops) with two alternative dairy production systems-(1) soil health management with no-till, cover crops, and application of a novel manure-based nutrient-rich stable product, and (2) management intensive grazing-and rotational grazing on pastures established with diverse forage-legume mix. Meteorological, edaphic, hydrologic, and agronomic data are collected and analyzed at regular frequencies. Going forward, the experiment will continue as a form of stakeholder-driven adaptive research and receive evaluation on a regular basis to determine whether any changes are required to address the "real-world" challenges faced by the farmers in the Midwest.

2.
Environ Sci Technol ; 58(22): 9701-9713, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780660

ABSTRACT

Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., >30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.


Subject(s)
Hydrology , Nitrous Oxide , Rivers , Rivers/chemistry , Groundwater/chemistry , Ecosystem , Nitrification , Soil/chemistry , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL