Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Patient Saf Surg ; 16(1): 18, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655219

ABSTRACT

BACKGROUND: Covering the prepared sterile back tables (PSBTs) during periods of nonuse and during active surgeries may decrease contamination of sterile surgical instruments that have direct contact to surgical wound. The Association of periOperative Registered Nurses (AORN) declared that an easy method for covering and removing the drape will ultimately be most effective (e.g. standard two-drape method). Hence, this study was designed to test the hypothesis that using a novel single-drape cover had more efficiency and safety in decreasing airborne bacteria-carrying particles (ABCPs) settling on the PSBTs during static and dynamic periods than the standard two-drape method. METHODS: This experimental study was conducted with using 918 agar plates to detect contamination of the PSBTs with ABCPs on two conditions (static and dynamic) at an academic medical center in Kashan, Iran, from September 25, 2021, to January 20, 2022. The contamination of PSBTs was evaluated by 6 agar settle plates (n = 918 in total) on each PSBT in static and dynamic operating room (OR) conditions. At each time-point, this set-up was repeated on two occasions else during data collection, establishing 81 PSBTs in total. Tested groups included the PSBTs covered with the standard two-drape method, the novel single-drape cover, or no cover. The plates were collected after 15, 30, 45, 60, 120, 180, 240 min and 24 h. The primary outcome measured was comparison of mean bioburden of ABCPs settling on covered PSBTs on two conditions by using agar settle plates. The secondary outcomes measured were to determine the role of covering in decreasing contamination of PSBTs and the estimation of time-dependent surgical instrument contamination in the uncovered PSBTs on two conditions by using agar settle plates. RESULTS: Covering the PSBTs during static and dynamic OR conditions lead to a significantly decreased bioburden of ABCPs on them (P < 0.05). No differences were seen between the standard two-drape method and the novel single-drape cover (P > 0.05). CONCLUSIONS: We found that there is no preference for using the novel single-drape cover than the standard two-drape method. Our results showed a significant decrease in bioburden of ABCPs on the PSBTs when those were covered during static and dynamic OR conditions, indicating the efficiency for covering the PSBTs during periods of nonuse and during active surgery.

2.
Malays J Med Sci ; 28(6): 64-75, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35002491

ABSTRACT

BACKGROUND: Chemical preservatives are now used in various foods to increase shelf life and maintain quality instead of its natural extracts with anti-bacterial properties from plants can be used. Hence this research was planned to evaluate and study the synergistic antibacterial effect of the methanolic extracts of Dracocephalum kotschyi (D. kotschyi) and Trachyspermum ammi (T. ammi) against standard pathogenic bacteria like: Pseudomonas aeruginosa (P. aeruginosa), Shigella dysenteriae (S. dysenteriae), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). METHODS: The methanolic extract of D. kotschyi and T. ammi was prepared by the Soxhlet method. The minimum inhibitory concentration (MIC) of this methanolic extracts were determined by the microdilution method. Thus, by determining the amount of fractional inhibitory concentration index (FICI), the interaction between the methanolic extracts of D. kotschyi and T. ammi on the pathogenic bacteria was determined. RESULTS: In this study, the MIC of the extracts of D. kotschyi and T. ammi on the pathogen; S. aureus was equal to 6.25 mg/mL and 12.5 mg/mL for S. dysenteriae, E. coli and P. aeruginosa. Hence, the combination of methanolic extracts of these plants shows a synergistic antibacterial effect (FICI < 0.5), on all tested pathogenic microorganisms was proved. CONCLUSION: Due to the antimicrobial synergistic effect and cost-effective production process of methanolic extracts of D. kotschyi and T. ammi, they are used as natural preservatives and flavouring agents to preserve foods.

SELECTION OF CITATIONS
SEARCH DETAIL