Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 317: 120720, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36442817

ABSTRACT

This paper describes a mobile air pollution sampling system, the Urban Scanner, which aims at gathering dense spatiotemporal air quality data to support urban air quality and exposure science. Urban Scanner comprises custom vehicle-mounted sensors for air pollution, meteorology, and built environment data collection (low-cost sensors, wind anemometer, 360 deg camera, LIDAR, GPS) as well as a server to store, process, and map all gathered geo-referenced sensory information. Two levels of sensor calibration were implemented, both in a chamber and in the field, against reference instrumentation. Chamber tests and a set of mathematical tools were developed to correct for sensor noise (wavelet denoising), misalignment (linear and nonlinear), and hysteresis removal. Models based on chamber testing were further refined based on field co-location. While field co-location captures natural changes in air pollution and meteorology, chamber tests allow for simulating fast transitions in these variables, like the transitions experienced by a mobile sensor in an urban environment. The best suite of models achieved an R2 higher than 0.9 between sensor output and reference station observations and an RMSE of 2.88 ppb for nitrogen dioxide and 4.03 ppb for ozone. A mobile sampling campaign was conducted in the city of Toronto, Canada, to further test Urban Scanner. We observe that the platform adequately captures spatial and temporal variability in urban air pollution, leading to the development of land-use regression models with high explanatory power.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Calibration , Environmental Monitoring , Air Pollution/analysis , Particulate Matter/analysis
2.
IEEE Trans Syst Man Cybern B Cybern ; 37(1): 190-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17278571

ABSTRACT

This paper presents a novel agent-based method for the dynamic coordinated selection and positioning of active-vision cameras for the simultaneous surveillance of multiple objects-of-interest as they travel through a cluttered environment with a-priori unknown trajectories. The proposed system dynamically adjusts not only the orientation but also the position of the cameras in order to maximize the system's performance by avoiding occlusions and acquiring images with preferred viewing angles. Sensor selection and positioning are accomplished through an agent-based approach. The proposed sensing-system reconfiguration strategy has been verified via simulations and implemented on an experimental prototype setup for automated facial recognition. Both simulations and experimental analyses have shown that the use of dynamic sensors along with an effective online dispatching strategy may tangibly improve the surveillance performance of a sensing system.


Subject(s)
Artificial Intelligence , Biometry/methods , Face/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Algorithms , Humans , Security Measures
SELECTION OF CITATIONS
SEARCH DETAIL
...