Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
2.
Cells ; 13(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38334679

ABSTRACT

A well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers' (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.


Subject(s)
Berberine , Carcinoma, Hepatocellular , Liver Neoplasms , Metal Nanoparticles , Selenium , Mice , Animals , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Selenium/pharmacology , Berberine/pharmacology , Silver/pharmacology , Liver Neoplasms/pathology , Cell Line
3.
Materials (Basel) ; 16(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37445083

ABSTRACT

Thermal expansion measurements were used to characterize phase transformations in metastable ß-Ti alloys (Ti15MoxSi) without and with various Si additions (where x = 0, 0.5, 1.0, 1.5, and 2 in wt.%) during linear heating at two heating rates of 5 and 10 °C/min up to 850 °C. For this study, five alloys were developed and examined in terms of their presence phases, microstructures, and starting and final transformation temperatures. According to the results, all of the as-cast samples primarily include an equiaxed ß-Ti phase. The influence of phase transformation on the material dimensions was discussed and compared with the variations in Si contents. The transformation was investigated using a dilatometric technique for the developed alloys during continuous heating and cooling. The dilatometric curve of heating revealed two distinct reflection points as the heating temperature increased. The starting transformation temperature (Ts) to obtain the ω-phase was reported at 359 °C without Si addition; whereas the final transformation temperature (Tf) of the dissolution of α-phase was obtained at 572 °C at a heating rate of 10 °C/min. At 2 wt.% Si, the first derivative curves reported Ts and Tf transforming temperatures of 314-565 °C (at a 5 °C/min heating rate) and 270-540 °C (at a 10 °C/min heating rate), respectively. The Ts and Tf transforming temperatures were significantly decreased with Si additions, which decreased the ß-transus temperature. Moreover, the thermal expansion coefficient curves of the investigated alloys without and with 2 wt.% Si were studied. The transformation heating curves have an S-shaped pattern, according to the results.

5.
Free Radic Biol Med ; 206: 106-110, 2023 09.
Article in English | MEDLINE | ID: mdl-37392949

ABSTRACT

We previously demonstrated that most diseases display a form of anabolism due to mitochondrial impairment: in cancer, a daughter cell is formed; in Alzheimer's disease, amyloid plaques; in inflammation cytokines and lymphokines. The infection by Covid-19 follows a similar pattern. Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction. This unrelenting anabolism leads to the cytokine storm, chronic fatigue, chronic inflammation or neurodegenerative diseases. Drugs such as Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism. Similarly, coMeBining Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism.


Subject(s)
COVID-19 , Thioctic Acid , Humans , Thioctic Acid/metabolism , Methylene Blue , Spike Glycoprotein, Coronavirus/metabolism , Oxidation-Reduction , Inflammation
6.
Materials (Basel) ; 16(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37049113

ABSTRACT

Friction stir-spot welding (FSSW) as a solid-state joining process for local welding offers a number of benefits for applications in the automotive, aerospace, and marine industries. In these industries, and from an economic point of view, producing spot welds at a low rotating speed and in a short time is critical for saving energy and enhancing productivity. This investigation helped fill a knowledge gap in the literature about FSSW of 4 mm similar lap joints of AA5052-H32 sheet materials, in which welding takes place over a short time period with a slow tool rotation speed. Consequently, the purpose of this work was to investigate the feasibility of FSSW 2 mm thick AA5052-H32 aluminum alloy sheets to produce 4 mm thick similar spot lap joints at various low dwell times of 1, 2, and 3 s and a constant relatively low tool rotation speed of 500 rpm. The introduced heat input for the friction stir-spot welded (FSSWed) lap joints was calculated based on the applied processing parameters. Joint appearance, cross-section macrostructures, and microstructure features of all the spot welds were evaluated. The mechanical properties (hardness contour maps and maximum tensile shear loads) were also examined. The results show that joining 2 mm sheet thickness AA5052-H32 at a low heat input in defect-free similar lap joints could be successfully achieved. The stir zone (SZ) region became wider as the dwell time increased from 1 to 3 s. The hardness value of the SZ was higher than that attained by the AA5052-H32 base material (BM) for all applied dwell times. Especially at 2 s, the hardness of the SZ was approximately 48% higher than that of the BM. This increase in hardness may be attributed to the high grain refinement of the new dynamically recrystallized grain (4 µm) in the SZ compared to the cold-rolled BM grain size (40 µm). Among the tried FSSW process variables, the dwell time of 2 s at a rotation rate of 500 rpm also produced the maximum tensile shear load of 4330 N. Finally, the locations and features of the fracture surfaces of the FSSWed joints were examined using a scanning electron microscope (SEM) and the obtained results were discussed.

7.
Materials (Basel) ; 16(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903146

ABSTRACT

This study investigates the effect of tool pin eccentricity and welding speed on the grain structure, crystallographic texture, and mechanical properties of friction stir welded (FSWed) AA5754-H24. Three tool pin eccentricities of 0, 0.2, and 0.8 mm at different welding speeds ranging from 100 mm/min to 500 mm/min and a constant tool rotation rate of 600 rpm were investigated. High-resolution electron backscattering diffraction (EBSD) data were acquired from each weld's center of the nugget zone (NG) and processed to analyze the grain structure and texture. In terms of mechanical properties, both hardness and tensile properties were investigated. The grain structure in the NG of the joints produced at 100 mm/min, 600 rpm, and different tool pin eccentricities showed significant grain refining due to dynamic recrystallization with average grain sizes of 18, 15, and 18 µm at 0, 0.2, and 0.8 mm pin eccentricities, respectively. Increasing the welding speed from 100 to 500 mm/min further reduced the average grain size of the NG zone to 12.4, 10, and 11 µm at 0, 0.2, and 0.8 mm eccentricity, respectively. The simple shear texture dominates the crystallographic texture with both B¯/B texture component with the C component at their ideal positions after rotating the data to align the shear reference frame with the FSW reference frame in both the PFs and ODF sections. The tensile properties of the welded joints were slightly lower than the base material due to the hardness reduction in the weld zone. However, the ultimate tensile strength and the yield stress for all welded joints increased by increasing the friction stir welding (FSW) speed from 100 to 500 mm/min. Welding using the pin eccentricity of 0.2 mm resulted in the highest tensile strength; at a welding speed of 500 mm/min, it reached 97% of the base material strength. The hardness profile showed the typical W shape with a reduction in the hardness of the weld zone and a slight recovery of the hardness in the NG zone.

8.
RSC Adv ; 13(10): 6327-6345, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36824230

ABSTRACT

Heavy oil fly ash "HOFA" is the fly ash generated in power stations using heavy oil as fuel. HOFA is considered a hazardous waste because it contains considerable amounts of heavy metals. However, it contains significant amounts of vanadium "V" and nickel "Ni", which are precious metals for manufacturing processes. This paper presents a critical review of various approaches described in the literature for the recovery of V and Ni from HOFA, including processes of leaching, chemical precipitation, solvent extraction, and ion exchange. The optimum operational parameters and their effects on recovery efficiency are discussed. The digestion mixtures of strong mineral acids used for dissolving all metals present in HOFA are also highlighted. The leaching processes of V and Ni use mainly acidic and alkaline solutions. Bioleaching is a promising environmentally friendly approach for the recovery of V and Ni through using appropriate bacteria and fungi. After leaching, V and Ni compounds are recovered and purified using various techniques, including chemical precipitation, solvent extraction, and ion exchange. In most cases, V and Ni are recovered as thermally decomposable compounds that undergo calcination to produce V2O5 and NiO. Eventually, V and Ni are recovered as pure oxides in most approaches, but pure metals are obtained in exceptional procedures.

9.
Clin Breast Cancer ; 23(3): e131-e139, 2023 04.
Article in English | MEDLINE | ID: mdl-36599770

ABSTRACT

BACKGROUND: Trastuzumab is an effective therapeutic approach for HER2-positive metastatic breast cancer (BC). However, a considerable number of patients develop resistance along the course of the disease. PTEN rs701848 polymorphisms are associated with an increased risk of developing cancer and have a potential role in predicting drug resistance. OBJECTIVE: We studied the significance of PTEN rs701848 variants as significant predictors for trastuzumab resistance in HER2-positive metastatic BC patients. Therefore, considering their value in predicting clinical outcomes. MATERIALS AND METHODS: This case-control study was conducted among female patients with HER2-positive metastatic breast cancer who underwent Trastuzumab therapy during the period from March 2017 to December 2020. PTEN rs701848 genotypes were analyzed in 160 HER2-positive metastatic breast cancer who received Trastuzumab therapy and clinically monitored for therapeutic response. RESULTS: PTEN rs701848 is deemed a significant predictor of Trastuzumab resistance and an independent prognostic factor of progression-free survival (PPFS). In particular, the C allele is associated with increased risk for Trastuzumab resistance and shorter PFS as compared to the homozygous TT genotype. CONCLUSION: PTEN rs701848 is significant predictor of trastuzumab resistance. Therefore, their value in predicting clinical outcomes is recommended.


Subject(s)
Breast Neoplasms , Humans , Female , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Progression-Free Survival , Case-Control Studies , Receptor, ErbB-2/genetics , Receptor, ErbB-2/therapeutic use , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/therapeutic use
10.
Nat Prod Res ; 37(18): 3109-3113, 2023.
Article in English | MEDLINE | ID: mdl-36346382

ABSTRACT

Autophagy is a protective mechanism important in human diseases as cancer. We evaluated the impact of khalas date extract (KDE) (20-60 mg/mL) on cell viability, morphological changes, DNA fragmentation and gene expression of LC3B-II associated with autophagosome on HepG2 cell line. The GC/MS identification of KDE showed its high content of flavonoids including quercetin, myricetin, kaempferol and catechol. KDE reduced cell viability of HepG2 with IC50 (31.52 mg/mL). Cells treated with KDE showed two band of DNA fragments at (30 and 40 mg) indicating that KDE induced DNA damage and apoptosis in HepG2. The analysis RT-PCR data showed a 0.2-fold increase in the expression of LC3-B in the cells treated with KDE versus control. We concluded that, KDE flavonoids such as quercetin, myricetin kaempferol exhibited anticancer properties manifested by inhibition of HepG2 cell viability and induction of apoptosis and upregulation of the pro-autophagy LC3-B gene.

11.
Environ Sci Pollut Res Int ; 30(6): 16346-16354, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36181589

ABSTRACT

Olive tree (Olea europaea, Oleaceae) leaf extract (OLE) exerts many biological activities. One of the most common polycyclic aromatic hydrocarbons (PAHs) that pollute the environment is 2-amino-l-methyI-6-phenyI-imidazo pyridine (PhIP). It is a food-derived carcinogen that is present in fish and meat that has been cooked at high temperatures. Due to the generation of reactive electrophilic species, phase I enzymes have the potential to cause oxidative damage. In order to safely remove these reactive species from the body, phase II detoxification (conjugation) enzymes are necessary. It is not known whether OLE could influence their activities and hence reduce the carcinogenic effects of PhIP. This study evaluated whether OLE could modulate phase I detoxifying enzymes as well as phase II enzymes that metabolize PhIP in rat liver microsomes. Four groups of rats were used: group I: no treatment; group II: OLE (10 mg/kg bw orally); group III: PhIP (0.1 mg/kg bw orally); and group IV: PhIP followed by OLE. After 4 weeks, the activities of phase I enzymes such as CYP1A1 (ethoxyresorufin O-deethylase), CYP2E1 (p-nitrophenol hydroxylase), CYP1A2 (methoxyresorufin O-demethylase), UDP-glucuronyl transferase, sulphotransferase, and glutathione-S transferase were evaluated in rat liver microsomes. Analysis of OLE by gas chromatography-mass spectrometry (GC/MS) showed various active ingredients in OLE, including 3,5-Heptadienal (C10H14O), 3,4-dimethoxy benzoic acid (C8H10O3), 4-hydroxy-3-methoxy (C8H8O4), 1,3,5-Benzenetriol (C6H6O3), hexadecanoic acid (C16H32O2), and hexadecanoic acid ethyl ester (C18H36O2). Our results showed that rats given PhIP were found to have a statistically significant (p < 0.001) reduction in the activities of CYP1A1, CYP1A2, and CYP2E1 in comparison with the control group. However, treatment with OLE enhanced their activities but not to a normal level compared with untreated groups. Administration of PhIP decreased the activities of phase II enzymes (glutathione S-transferase, UDP-glucuronyltransferase, or sulphotransferase) (p < 0.01) in comparison with the control group. Histological examination of rat livers was consistent with the biochemical changes. The administration of OLE improved the phase II enzyme activities in animals injected with PhIP. We conclude that OLE influences phase I and phase II detoxification enzymes exposed to PhIP, which may represent a new approach to attenuating carcinogenesis induced by it.


Subject(s)
Cytochrome P-450 CYP1A2 , Olea , Rats , Animals , Cytochrome P-450 CYP1A2/metabolism , Olea/chemistry , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP2E1/metabolism , Palmitic Acid , Liver , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/pharmacology , Glutathione Transferase/metabolism , Pyridines/metabolism , Uridine Diphosphate/metabolism , Uridine Diphosphate/pharmacology
12.
Environ Sci Pollut Res Int ; 29(55): 83723-83732, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35773616

ABSTRACT

Prodigiosins have been shown to have anticancer activities. 5-Fluorouracil (5-FU) is broadly used chemotherapeutic drug that treats different solid tumors including breast cancer but has low response rates and a variety of side effects. In this study, we evaluated the anticancer properties of prodigiosins in a murine model "Ehrlich tumor" and tested whether it can be added to 5-FU to potentiate its effects. Markers of oxidative stress; MDA, NO, and GSH levels were evaluated as well as antioxidant enzyme activities of CAT SOD, GR, and GPx. The levels of Bax, Bcl-2, PCNA, and NF-κB proteins were measured using ELISA kits. The mRNAs of p53 and Cdc2 and Casp3 were quantitatively measured by real-time PCR and ELISA respectively. Cell cycle analysis was performed using flow cytometery. Prodigiosins did not influence tumor volume. Prodigiosins have not induced oxidative stress while 5-FU did increase MDA, NO but decreased GSH levels. The combination prodigiosins and 5-FU did reduce oxidative stress markers; MDA, NO and increased GSH levels. Prodigiosins significantly increased CAT only while 5-FU did decreased SOD, CAT, GPx, and GR. The combination prodigiosins and 5-FU increased the levels of these enzymes again. Prodigiosins increased the Bax/Bcl-2 ratio while the combination deceased it. In conclusion, prodigiosins have pronounced anticancer properties but their combination with 5-FU decreased oxidative stress exerted by 5-FU but weakened the apoptotic effects of 5-FU. Prodigiosins could affect a key mechanism through which 5-FU exerts its tumor inhibitory effects.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , Fluorouracil/pharmacology , Prodigiosin , bcl-2-Associated X Protein/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Antioxidants/pharmacology , Superoxide Dismutase , Cell Line, Tumor
13.
Immunobiology ; 226(6): 152149, 2021 11.
Article in English | MEDLINE | ID: mdl-34735923

ABSTRACT

T-cell Acute Lymphoblastic Leukemia (T-ALL) accounts for around 10-15% of all lymphoblastic leukemia in children. Previous studies have proven that dysregulation of Leukemia-induced non-coding activator RNA-1 (LUNAR1) expression promotes T-ALL cell growth by enhancing the NOTCH1/IGF-1R signaling pathway. We aimed to investigate the prognostic value of LUNAR1 in pediatric T-ALL, in addition, to find out its association with NOTCH1 and IGF-1R. The LUNAR1, NOTCH1, and IGF-IR gene expression were measured in peripheral blood (PB) samples of l85 children with T-ALL and forty non-leukemic samples as a control group. Cox regression analysis revealed that overexpression of LUNAR1, NOTCH1, and IGF-IR was significantly correlated with poor prognosis, short overall survival, and progression-free survival. We concluded that LUNAR1 could serve as an independent prognostic biomarker for T-ALL in children.


Subject(s)
Biomarkers, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , RNA, Long Noncoding/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Case-Control Studies , Child , Disease Management , Disease Susceptibility , Female , Gene Expression Regulation, Leukemic , Humans , Immunophenotyping , Kaplan-Meier Estimate , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Treatment Outcome
14.
Biomed Pharmacother ; 142: 111960, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34352718

ABSTRACT

Hepatocellular carcinoma is one of the most common causes of cancer-related deaths globally. Bioavailable, effective and safe therapeutic agents are urgently needed for cancer treatment. This study evaluated the metabolomics profiling, anti-proliferative and pro-apoptotic effects of strigol/albumin/chitosan nanoparticles (S/A/CNP) on HepG2 cell line. The diameter of S/A/CNP was (5 ±â€¯0.01) nm. The IC50 was 180.4 nM and 47.6 nM for Strigol1 and S/A/CNP, respectively, after incubation for 24 h with HepG2 cells. By increasing the concentration of S/A/CNP, there was chromatin condensation, degranulation in the cytoplasm and shrinking in cell size indicating pro-apoptotic activity. Metabolomics profiling of the exposed cells by LC/MS/MS revealed that S/A/CNP up-regulated epigenetic intermediates (spermine and spermidine) and down-regulated energy production pathway and significantly decreased glutamine (P < 0.001). These findings demonstrated that S/A/CNP has anti-proliferative, apoptotic effects and modulate energetic, and epigenetic metabolites in the hepatocellular carcinoma cell line (HepG2).


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Lactones/pharmacology , Liver Neoplasms/drug therapy , Nanoparticles , Apoptosis/drug effects , Carcinoma, Hepatocellular/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Chitosan/chemistry , Chromatography, Liquid , Down-Regulation/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Lactones/administration & dosage , Liver Neoplasms/genetics , Metabolomics , Particle Size , Serum Albumin, Human/chemistry , Tandem Mass Spectrometry , Up-Regulation/drug effects
15.
J Diabetes Res ; 2020: 6762709, 2020.
Article in English | MEDLINE | ID: mdl-32626781

ABSTRACT

Diabetes mellitus (DM) is a chronic endocrine disease characterized by persistent hyperglycemia. Oxidative damage, inflammatory cytokines, and apoptotic cell death play a major role in the induction and progression of male testicular damage. Plant-derived phytochemicals such as green coffee (Coffea arabica) can possess antidiabetic effects with little toxicity. The current study is aimed at investigating the therapeutic roles of green coffee in diabetic testicular injury stimulated by high-fat diet/streptozotocin administration. Diabetes mellitus was induced by a high-fat diet and a single dose of streptozotocin (STZ) (35 mg kg-1) in male albino rats. Diabetic animals were orally given two different concentrations of green coffee (50 mg kg-1 and 100 mg kg-1) for 28 days. The levels of testosterone, luteinizing hormone, and follicle-stimulating hormone and parameters of oxidative stress, inflammation, and apoptosis were measured. mRNAs and protein levels were detected quantitatively by real-time PCR and ELISA, respectively. In the diabetic group, the levels of testosterone, luteinizing hormone, and follicle-stimulating hormone showed a significant reduction while they increased significantly after green coffee treatment. A significant increase of antioxidant markers glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase along with decreased levels of lipid peroxides and nitric oxide was observed after green coffee treatment in the diabetic group. Finally, the levels of IL-1ß, TNF-α, Bax, and caspase-3 were also decreased in both treated groups (metformin and green coffee) when compared to the diabetic group. We conclude that testicular oxidative impairment induced by a high-fat diet (HFD) and STZ can be reversed by green coffee. Administration of green coffee could represent a promising therapeutic agent which can help the treatment of type 2 DM-induced testicular dysfunction.


Subject(s)
Apoptosis/drug effects , Coffea , Diabetes Complications/metabolism , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Testicular Diseases/metabolism , Testis/drug effects , Animals , Caspase 3/drug effects , Caspase 3/metabolism , Catalase/drug effects , Catalase/metabolism , Diet, High-Fat , Enzyme-Linked Immunosorbent Assay , Follicle Stimulating Hormone/metabolism , Glutathione/drug effects , Glutathione/metabolism , Glutathione Peroxidase/drug effects , Glutathione Peroxidase/metabolism , Glutathione Reductase/drug effects , Glutathione Reductase/metabolism , Hypoglycemic Agents/pharmacology , Inflammation/metabolism , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Lipid Peroxidation/drug effects , Luteinizing Hormone/drug effects , Luteinizing Hormone/metabolism , Male , Metformin/pharmacology , Nitric Oxide/metabolism , RNA, Messenger , Rats , Real-Time Polymerase Chain Reaction , Streptozocin/toxicity , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism , Testis/metabolism , Testosterone/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/drug effects , bcl-2-Associated X Protein/metabolism
16.
Mol Biol Rep ; 43(4): 229-40, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26907180

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that function in transcriptional and post-transcriptional regulation of gene expression. Several miRNAs have been implicated in regulating prostate cancer (PCa) progression. Deregulations of miRNA regulatory networks have been reported in ERG positive PCa, which accounts for ~50 % of PCa and have been suggested to affect tumor aggressiveness. The function of miR338-3p, its prognostic significance, and its association with ERG positive PCa has not been fully investigated. Using microarray expression profiling, we identified miRNA338-3p as among the top deregulated miRNAs associated with ERG status in PCa. We investigated miR338-3p function using in vitro and in vivo experimental models and its expression was assessed and validated in clinical samples and a public cohort of localized and metastatic prostate cancer. miR338-3p was significantly down-regulated with disease progression from benign prostate tissue to primary and metastatic lesions. In localized disease, patients with lower miR338-3p expression levels showed increased association to biochemical recurrence and several adverse pathological parameters compared to patients with higher miRNA338-3p tissue expression levels. Using in vitro PCa cell models, overexpression of miR338-3p resulted in a decrease in cell invasion and expression of chemokine signalling genes CXCL12, CXCR4, and CXCR7. In vivo, orthotropic implantation of PC3 cells stably expressing miR338-3p was associated with a significant decrease in tumor weights compared to control cells. miR338-3p has anti-proliferative and anti-invasive properties. It affects CXCR4 axis, and its down-regulation is associated with adverse clinical outcomes in PCa patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , MicroRNAs/genetics , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Chemokine CXCL12/genetics , Humans , Male , Mice , Mice, SCID , Neoplasm Metastasis , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Receptors, CXCR/genetics , Receptors, CXCR4/genetics
17.
J Hazard Mater ; 280: 191-9, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25156719

ABSTRACT

The dust waste formed during steelmaking in electric arc furnace (EAF) is rich in ferrous and nonferrous metals. Recycling of this dust as a raw material in iron or steel-making is hazardous and therefore it is mostly dumped. This paper demonstrates recycling of EAF dust through selective dissolution of metal oxides in a deep eutectic ionic liquid. It was found that about 60% of Zn and 39% of Pb could be dissolved from the dust when stirred for 48h in 1 choline chloride:2 urea ionic liquid at 60°C. The resultant electrolyte was subsequently fed to a conventional three-electrode cell where cyclic voltammetry (CV) measurements were conducted to describe its electrochemical behavior. Two deposition peaks were determined and ascribed to deposition of zinc and lead. Static potentials were successively applied to electrowin metallic zinc. SEM/EDX investigations showed that the zinc electrowon contained remarkable contents of lead.


Subject(s)
Electroplating , Ionic Liquids , Lead/isolation & purification , Recycling , Zinc/isolation & purification , Choline/chemistry , Dust/analysis , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Urea/chemistry
18.
BJU Int ; 113(2): 309-19, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24006850

ABSTRACT

OBJECTIVES: ERG-gene rearrangement defines a distinct molecular subtype of PCA with potential biological and clinical implications. To identify a molecular signature reflective of the downstream effects of ERG-mediated transcriptional regulation with prognostic implication in patients with prostate cancer (PCA). MATERIAL AND METHODS: We used a singular value decomposition (SVD) bioinformatics approach to re-analyse gene expression data previously generated from 46 prostate tumours, and identified an ERG-like gene signature. The signature was validated on several patient cohorts and individual genes were correlated to ERG expression and PCA progression. RESULTS: An ERG-like 10-gene signature was identified and validated in PCA cohorts of the physician health study (p115) (n = 110) in addition to three independent public datasets, and was significantly associated with disease progression, biochemical recurrence and PCA-specific mortality. Patients with the ERG-like signature were significantly associated with disease recurrence on univariate (hazard ratio [HR] 2.6; 95% confidence interval [CI]:1.3-5.2; P = 0.004) and multivariate analysis (HR 2.3; 95% CI:1.1-4.6, P = 0.016) compared with patients without this signature. Within the group of patients with Gleason score (GS) 6 and 7 PCA, the signature added prognostic value beyond GS and identified patients at higher risk of cancer deaths more accurately than GS alone or in combination with ERG status. Protein expression of the 10 genes were significantly associated with ERG and disease progression regardless of ERG status. CONCLUSION: The characterized ERG-like signature was reflective of aggressive features of ERG-mediated transcription and was prognostically robust. The combination of this signature with clinicopathological variables should be validated prospectively to explore its clinical utility in stratifying patients with PCA and in identifying those at higher risk of metastatic and lethal disease.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Rearrangement , Prostatic Neoplasms/genetics , Trans-Activators/genetics , Computational Biology , Disease Progression , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Neoplasm Grading , Prognosis , Prostatic Neoplasms/pathology , Survival Analysis , Trans-Activators/metabolism , Transcriptional Regulator ERG
19.
PLoS One ; 7(12): e48993, 2012.
Article in English | MEDLINE | ID: mdl-23272046

ABSTRACT

TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12) and OR = 0.99 [0.37-2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.


Subject(s)
Gene Expression Regulation, Neoplastic , Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics , Tumor Suppressor Protein p53/genetics , Urinary Bladder Neoplasms/genetics , Disease Progression , Female , Genes, p53 , Humans , Male , Medical Oncology/methods , Prevalence
20.
BJU Int ; 109(5): 788-95, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21771248

ABSTRACT

OBJECTIVES: • To investigate the effects of different folic acid concentrations on the growth and invasiveness of prostate cancer cell lines. • To determine if observed changes are correlated with changes in levels of the potential prostate cancer biomarker, sarcosine, a byproduct of folate metabolism. MATERIALS AND METHODS: • The prostate cancer cell lines PC-3, LNCaP and DU145 were cultured in media containing 4, 20 or 100 nm of folic acid and assayed for growth over 9 days by counting viable cells at 3-day intervals, or for invasion by passage through a Matrigel-coated transwell membrane. • Cells grown in the different folic acid media were collected and subjected to metabolomic analysis by gas chromatography and mass spectrometry to measure levels of intracellular sarcosine. RESULTS: • The results show that higher levels of folic acid can increase cell growth in PC-3 and LNCaP prostate cancer cell lines, and may also increase the invasive capacity of PC-3, LNCaP and DU145 cells. • We did not observe a correlation between increased invasion from higher folic acid concentrations and levels of sarcosine, but there were significant changes in other metabolites in cells grown in higher levels of folic acid. CONCLUSION: • These findings suggest that folic acid has an important and potentially negative role in prostate cancer progression.


Subject(s)
Cell Proliferation , Folic Acid/physiology , Prostatic Neoplasms/pathology , Humans , Male , Neoplasm Invasiveness , Sarcosine/analysis , Tumor Cells, Cultured/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...