Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Eur J Neurol ; 31(4): e16206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270442

ABSTRACT

BACKGROUND: Alpha-synuclein (α-Syn) oligomers and fibrils have been shown to augment the aggregation of TAR DNA-binding Protein 43 (TDP-43) monomers in vitro, supporting the idea that TDP-43 proteinopathies such as ALS may be modulated by the presence of toxic forms of α-Syn. Recently, parkinsonian features were reported in a study of European patients and Lewy bodies have been demonstrated pathologically in a similar series of patients. Based on these and other considerations, we sought to determine whether seed-competent α-Syn can be identified in spinal fluid of patients with ALS including familial, sporadic, and Guamanian forms of the disease. METHODS: Based on the finding that α-Syn has been found to be a prion-like protein, we have utilized a validated α-Synuclein seed amplification assay to determine if seed-competent α-Syn could be detected in the spinal fluid of patients with ALS. RESULTS: Toxic species of α-Syn were detected in CSF in 18 of 127 ALS patients, 5 of whom were from Guam. Two out of twenty six samples from patients with C9orf72 variant ALS had positive seed-amplification assays (SAAs). No positive tests were noted in superoxide dismutase type 1 ALS subjects (n = 14). The SAA was negative in 31 control subjects. CONCLUSIONS: Our findings suggest that a sub-group of ALS occurs in which self-replicating α-Syn is detectable and likely contributes to its pathogenesis. This finding may have implications for the diagnosis and treatment of this disorder.


Subject(s)
Amyotrophic Lateral Sclerosis , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Amyotrophic Lateral Sclerosis/pathology , Lewy Bodies/metabolism , Lewy Bodies/pathology , Superoxide Dismutase-1
2.
Alzheimers Dement ; 19(8): 3537-3554, 2023 08.
Article in English | MEDLINE | ID: mdl-36825691

ABSTRACT

The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Choroid Plexus/metabolism , Choroid Plexus/pathology , Proteomics , Aging , Inflammation
3.
Magn Reson Imaging ; 85: 217-221, 2022 01.
Article in English | MEDLINE | ID: mdl-34715291

ABSTRACT

T2⁎ relaxivity contrast imaging may serve as a potential imaging biomarker for amyotrophic lateral sclerosis (ALS) by noninvasively quantifying the tissue microstructure. In this preliminary longitudinal study, we investigated the Transverse Relaxivity at Tracer Equilibrium (TRATE) in three muscle groups between SOD1-G93A (ALS model) rat and a control population at two different timepoints. The control group was time matched to the ALS group such that the second timepoint was the onset of disease. We observed a statistically significant decrease in TRATE over time in the gastrocnemius, tibialis, and digital flexor muscles in the SOD1-G93A model (p-value = 0.003, 0.008, 0.005; respectively), whereas TRATE did not change over time in the control group (p-value = 0.4777, 0.6837, 0.9682; respectively). Immunofluorescent staining revealed a decrease in minimum fiber area and cell density in the SOD1-G93A model when compared to the control group (p-value = 6.043E-10 and 2.265E-10, respectively). These microstructural changes observed from histology align with the theorized biophysical properties of TRATE. We demonstrate that TRATE can longitudinally differentiate disease associated atrophy from healthy muscle and has potential to serve as a biomarker for disease progression and ultimately therapy response in patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Disease Progression , Humans , Longitudinal Studies , Mice , Mice, Transgenic , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Rats
4.
Neuron ; 109(10): 1675-1691.e9, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33848474

ABSTRACT

Tau aggregates contribute to neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate, in cell culture and mouse brains, that cytosolic and nuclear tau aggregates contain RNA with enrichment for small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, we observe that the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.


Subject(s)
Alzheimer Disease/metabolism , Cell Nucleus/metabolism , RNA, Small Nucleolar/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Cell Nucleus/ultrastructure , Cytosol/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , Protein Transport , RNA Splicing , RNA-Binding Proteins/metabolism
5.
Neurobiol Dis ; 149: 105228, 2021 02.
Article in English | MEDLINE | ID: mdl-33359139

ABSTRACT

Disruption in copper homeostasis causes a number of cognitive and motor deficits. Wilson's disease and Menkes disease are neurodevelopmental disorders resulting from mutations in the copper transporters ATP7A and ATP7B, with ATP7A mutations also causing occipital horn syndrome, and distal motor neuropathy. A 65 year old male presenting with brachial amyotrophic diplegia and diagnosed with amyotrophic lateral sclerosis (ALS) was found to harbor a p.Met1311Val (M1311V) substitution variant in ATP7A. ALS is a fatal neurodegenerative disease associated with progressive muscle weakness, synaptic deficits and degeneration of upper and lower motor neurons. To investigate the potential contribution of the ATP7AM1311V variant to neurodegeneration, we obtained and characterized both patient-derived fibroblasts and patient-derived induced pluripotent stem cells differentiated into motor neurons (iPSC-MNs), and compared them to control cell lines. We found reduced localization of ATP7AM1311V to the trans-Golgi network (TGN) at basal copper levels in patient-derived fibroblasts and iPSC-MNs. In addition, redistribution of ATP7AM1311V out of the TGN in response to increased extracellular copper was defective in patient fibroblasts. This manifested in enhanced intracellular copper accumulation and reduced survival of ATP7AM1311V fibroblasts. iPSC-MNs harboring the ATP7AM1311V variant showed decreased dendritic complexity, aberrant spontaneous firing, and decreased survival. Finally, expression of the ATP7AM1311V variant in Drosophila motor neurons resulted in motor deficits. Apilimod, a drug that targets vesicular transport and recently shown to enhance survival of C9orf72-ALS/FTD iPSC-MNs, also increased survival of ATP7AM1311V iPSC-MNs and reduced motor deficits in Drosophila expressing ATP7AM1311V. Taken together, these observations suggest that ATP7AM1311V negatively impacts its role as a copper transporter and impairs several aspects of motor neuron function and morphology.


Subject(s)
Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Copper/metabolism , Genetic Variation/physiology , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Cells, Cultured , Copper/pharmacology , Copper/therapeutic use , Dose-Response Relationship, Drug , Drosophila , Genetic Variation/drug effects , HeLa Cells , Homeostasis/drug effects , Homeostasis/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mice , Motor Neuron Disease/drug therapy , Protein Transport/drug effects , Protein Transport/physiology
6.
Nat Commun ; 9(1): 3431, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143619

ABSTRACT

Duchenne muscular dystrophy (DMD) is a neuromuscular disorder causing progressive muscle degeneration. Although cardiomyopathy is a leading mortality cause in DMD patients, the mechanisms underlying heart failure are not well understood. Previously, we showed that NF-κB exacerbates DMD skeletal muscle pathology by promoting inflammation and impairing new muscle growth. Here, we show that NF-κB is activated in murine dystrophic (mdx) hearts, and that cardiomyocyte ablation of NF-κB rescues cardiac function. This physiological improvement is associated with a signature of upregulated calcium genes, coinciding with global enrichment of permissive H3K27 acetylation chromatin marks and depletion of the transcriptional repressors CCCTC-binding factor, SIN3 transcription regulator family member A, and histone deacetylase 1. In this respect, in DMD hearts, NF-κB acts differently from its established role as a transcriptional activator, instead promoting global changes in the chromatin landscape to regulate calcium genes and cardiac function.


Subject(s)
Muscular Dystrophy, Duchenne/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Animals , CCCTC-Binding Factor/metabolism , Calcium/metabolism , Cells, Cultured , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/physiology , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction/physiology , Sin3 Histone Deacetylase and Corepressor Complex , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
7.
Acta Neuropathol ; 135(2): 227-247, 2018 02.
Article in English | MEDLINE | ID: mdl-29134320

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with no effective treatments. Numerous RNA-binding proteins (RBPs) have been shown to be altered in ALS, with mutations in 11 RBPs causing familial forms of the disease, and 6 more RBPs showing abnormal expression/distribution in ALS albeit without any known mutations. RBP dysregulation is widely accepted as a contributing factor in ALS pathobiology. There are at least 1542 RBPs in the human genome; therefore, other unidentified RBPs may also be linked to the pathogenesis of ALS. We used IBM Watson® to sieve through all RBPs in the genome and identify new RBPs linked to ALS (ALS-RBPs). IBM Watson extracted features from published literature to create semantic similarities and identify new connections between entities of interest. IBM Watson analyzed all published abstracts of previously known ALS-RBPs, and applied that text-based knowledge to all RBPs in the genome, ranking them by semantic similarity to the known set. We then validated the Watson top-ten-ranked RBPs at the protein and RNA levels in tissues from ALS and non-neurological disease controls, as well as in patient-derived induced pluripotent stem cells. 5 RBPs previously unlinked to ALS, hnRNPU, Syncrip, RBMS3, Caprin-1 and NUPL2, showed significant alterations in ALS compared to controls. Overall, we successfully used IBM Watson to help identify additional RBPs altered in ALS, highlighting the use of artificial intelligence tools to accelerate scientific discovery in ALS and possibly other complex neurological disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Artificial Intelligence , Computational Biology/methods , RNA-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Cerebellum/metabolism , Computational Biology/instrumentation , Data Mining , Gene Expression , Humans , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Retrospective Studies , Scholarly Communication , Spinal Cord/metabolism
8.
Sci Rep ; 7(1): 14529, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109432

ABSTRACT

Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.


Subject(s)
Active Transport, Cell Nucleus/genetics , Amyotrophic Lateral Sclerosis/genetics , Nuclear Matrix-Associated Proteins/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Humans , Immunoprecipitation , Mass Spectrometry , Mutation/genetics , Protein Interaction Maps/genetics
9.
Sci Rep ; 5: 14262, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26391765

ABSTRACT

The aggregation of RNA-binding proteins is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RBM45 is an RNA-binding protein that forms cytoplasmic inclusions in neurons and glia in ALS and FTLD. To explore the role of RBM45 in ALS and FTLD, we examined the contribution of the protein's domains to its function, subcellular localization, and interaction with itself and ALS-linked proteins. We find that RBM45 forms homo-oligomers and physically associates with the ALS-linked proteins TDP-43 and FUS in the nucleus. Nuclear localization of RBM45 is mediated by a bipartite nuclear-localization sequence (NLS) located at the C-terminus. RBM45 mutants that lack a functional NLS accumulate in the cytoplasm and form TDP-43 positive stress granules. Moreover, we identify a novel structural element, termed the homo-oligomer assembly (HOA) domain, that is highly conserved across species and promote homo-oligomerization of RBM45. RBM45 mutants that fail to form homo-oligomers exhibit significantly reduced association with ALS-linked proteins and inclusion into stress granules. These results show that RMB45 may function as a homo-oligomer and that its oligomerization contributes to ALS/FTLD RNA-binding protein aggregation.


Subject(s)
Carrier Proteins/metabolism , Inclusion Bodies/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Multimerization , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Cell Line , DNA-Binding Proteins/metabolism , Humans , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , Nuclear Localization Signals/chemistry , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , Protein Transport , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/genetics , Sequence Alignment
10.
Mol Cell Biol ; 35(14): 2385-99, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25939382

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulated in vitro in motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Antioxidants/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Female , Gene Expression , HEK293 Cells , Humans , Immunoblotting , Kelch-Like ECH-Associated Protein 1 , Male , Microscopy, Fluorescence , Middle Aged , Nerve Tissue Proteins/genetics , Protein Binding , RNA Interference , RNA-Binding Proteins/genetics , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism
11.
Brain Res ; 1607: 94-107, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25452025

ABSTRACT

The past decade has seen a dramatic increase in the discovery of candidate biomarkers for ALS. These biomarkers typically can either differentiate ALS from control subjects or predict disease course (slow versus fast progression). At the same time, late-stage clinical trials for ALS have failed to generate improved drug treatments for ALS patients. Incorporation of biomarkers into the ALS drug development pipeline and the use of biologic and/or imaging biomarkers in early- and late-stage ALS clinical trials have been absent and only recently pursued in early-phase clinical trials. Further clinical research studies are needed to validate biomarkers for disease progression and develop biomarkers that can help determine that a drug has reached its target within the central nervous system. In this review we summarize recent progress in biomarkers across ALS model systems and patient population, and highlight continued research directions for biomarkers that stratify the patient population to enrich for patients that may best respond to a drug candidate, monitor disease progression and track drug responses in clinical trials. It is crucial that we further develop and validate ALS biomarkers and incorporate these biomarkers into the ALS drug development process. This article is part of a Special Issue entitled ALS complex pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Clinical Trials as Topic , Drug Discovery/methods , Animals , Biomarkers/metabolism , Humans , Prognosis
12.
Sci Signal ; 6(286): ra63, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23901138

ABSTRACT

In sarcoma, the activity of NF-κB (nuclear factor κB) reduces the abundance of the microRNA (miRNA) miR-29. The tumor suppressor A20 [also known as TNFAIP3 (tumor necrosis factor-α-induced protein 3)] inhibits an upstream activator of NF-κB and is often mutated in lymphomas. In a panel of human sarcoma cell lines, we found that the activation of NF-κB was increased and, although the abundance of A20 protein and mRNA was decreased, the gene encoding A20 was rarely mutated. The 3' untranslated region (UTR) of A20 mRNA has conserved binding sites for both of the miRNAs miR-29 and miR-125. Whereas the expression of miR-125 was increased in human sarcoma tissue, that of miR-29 was decreased in most samples. Overexpression of miR-125 decreased the abundance of A20 mRNA, whereas reconstituting miR-29 in sarcoma cell lines increased the abundance of A20 mRNA and protein. By interacting directly with the RNA binding protein HuR (human antigen R; also known as ELAVL1), miR-29 prevented HuR from binding to the A20 3'UTR and recruiting the RNA degradation complex RISC (RNA-induced silencing complex), suggesting that miR-29 can act as a decoy for HuR, thus protecting A20 transcripts. Decreased miR-29 and A20 abundance in sarcomas correlated with increased activity of NF-κB and decreased expression of genes associated with differentiation. Together, the findings reveal a unique role of miR-29 and suggest that its absence may contribute to sarcoma tumorigenesis.


Subject(s)
DNA-Binding Proteins/metabolism , ELAV Proteins/metabolism , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/physiology , Nuclear Proteins/metabolism , 3' Untranslated Regions , Animals , Binding Sites , Computational Biology , Gene Silencing , Genes, Reporter , Humans , Immunoprecipitation , Inflammation , Mice , Mutation , NF-kappa B/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Sequence Analysis, DNA , Tumor Necrosis Factor alpha-Induced Protein 3
14.
Skelet Muscle ; 2(1): 6, 2012 05 19.
Article in English | MEDLINE | ID: mdl-22541644

ABSTRACT

BACKGROUND: Mice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells. Myoblasts isolated from MyoD-/- myoblasts proliferate more rapidly than wild type myoblasts, display a dramatic delay in differentiation, and continue to incorporate BrdU after serum withdrawal. METHODS: Primary myoblasts isolated from wild type and MyoD-/- mutant mice were examined by microarray analysis and further characterized by cell and molecular experiments in cell culture. RESULTS: We found that NF-κB, a key regulator of cell-cycle withdrawal and differentiation, aberrantly maintains nuclear localization and transcriptional activity in MyoD-/- myoblasts. As a result, expression of cyclin D is maintained during serum withdrawal, inhibiting expression of muscle-specific genes and progression through the differentiation program. Sustained nuclear localization of cyclin E, and a concomitant increase in cdk2 activity maintains S-phase entry in MyoD-/- myoblasts even in the absence of mitogens. Importantly, this deficit was rescued by forced expression of IκBαSR, a non-degradable mutant of IκBα, indicating that inhibition of NF-κB is sufficient to induce terminal myogenic differentiation in the absence of MyoD. CONCLUSION: MyoD-induced cytoplasmic relocalization of NF-κB is an essential step in linking cell-cycle withdrawal to the terminal differentiation of skeletal myoblasts. These results provide important insight into the unique functions of MyoD in regulating the switch from progenitor proliferation to terminal differentiation.

15.
J Cell Biol ; 196(4): 497-511, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22351927

ABSTRACT

Although the physiological basis of canonical or classical IκB kinase ß (IKKß)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show that mice deleted for the alternative NF-κB components IKKα or RelB have reduced mitochondrial content and function. Conversely, expressing alternative, but not classical, NF-κB pathway components in skeletal muscle stimulates mitochondrial biogenesis and specifies slow twitch fibers, suggesting that oxidative metabolism in muscle is selectively controlled by the alternative pathway. The alternative NF-κB pathway mediates this specificity by direct transcriptional activation of the mitochondrial regulator PPAR-γ coactivator 1ß (PGC-1ß) but not PGC-1α. Regulation of PGC-1ß by IKKα/RelB also is mammalian target of rapamycin (mTOR) dependent, highlighting a cross talk between mTOR and NF-κB in muscle metabolism. Together, these data provide insight on PGC-1ß regulation during skeletal myogenesis and reveal a unique function of alternative NF-κB signaling in promoting an oxidative metabolic phenotype.


Subject(s)
Cell Respiration , I-kappa B Kinase/metabolism , Muscle Development/physiology , Muscle, Skeletal/metabolism , Myoblasts/metabolism , NF-kappa B/metabolism , Animals , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Gene Expression Regulation , Immunoenzyme Techniques , Luciferases/metabolism , Mice , Mitochondria/metabolism , Muscle, Skeletal/cytology , Myoblasts/cytology , NF-kappa B/genetics , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors
16.
Curr Top Dev Biol ; 96: 85-119, 2011.
Article in English | MEDLINE | ID: mdl-21621068

ABSTRACT

Muscle development, growth, and maintenance require an intricate and timely series of events initiated through a multitude of signaling pathways. The very nature of skeletal muscle requires tremendous plasticity to accommodate the need for anabolism or catabolism, and deregulation of these processes may be a tipping point in the development or progression of various skeletal muscle disorders. Among the relevant signaling pathways, NF-κB has emerged as a critical factor involved in various facets of muscle homeostasis. In this review, we summarize the NF-κB signaling pathway and provide a fresh perspective into the regulation and function of this transcription factor, underlying both the physiological and pathophysiological states of skeletal muscle.


Subject(s)
Muscle, Skeletal/metabolism , NF-kappa B/metabolism , Signal Transduction , Adaptation, Physiological , Animals , Humans , Muscle Development , Muscle, Skeletal/cytology
17.
Physiol Rev ; 90(2): 495-511, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20393192

ABSTRACT

NF-kappaB is a ubiquitiously expressed transcription factor that plays vital roles in innate immunity and other processes involving cellular survival, proliferation, and differentiation. Activation of NF-kappaB is controlled by an IkappaB kinase (IKK) complex that can direct either canonical (classical) NF-kappaB signaling by degrading the IkappaB inhibitor and releasing p65/p50 dimers to the nucleus, or causes p100 processing and nuclear translocation of RelB/p52 via a noncanonical (alternative) pathway. Under physiological conditions, NF-kappaB activity is transiently regulated, whereas constitutive activation of this transcription factor typically in the classical pathway is associated with a multitude of disease conditions, including those related to skeletal muscle. How NF-kappaB functions in muscle diseases is currently under intense investigation. Insight into this role of NF-kappaB may be gained by understanding at a more basic level how this transcription factor contributes to skeletal muscle cell differentiation. Recent data from knockout mice support that the classical NF-kappaB pathway functions as an inhibitor of skeletal myogenesis and muscle regeneration acting through multiple mechanisms. In contrast, alternative NF-kappaB signaling does not appear to be required for myofiber conversion, but instead functions in myotube homeostasis by regulating mitochondrial biogenesis. Additional knowledge of these signaling pathways in skeletal myogenesis should aid in the development of specific inhibitors that may be useful in treatments of muscle disorders.


Subject(s)
Muscle Development/physiology , Muscle, Skeletal/growth & development , NF-kappa B/metabolism , Signal Transduction/physiology , Animals , Muscular Diseases/metabolism
18.
J Biol Chem ; 285(8): 5479-87, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20018862

ABSTRACT

Classical NF-kappaB activity functions as an inhibitor of the skeletal muscle myogenic program. Recent findings reveal that even in newborn RelA/p65(-/-) mice, myofiber numbers are increased over that of wild type mice, suggesting that NF-kappaB may be a contributing factor in early postnatal skeletal muscle development. Here we show that in addition to p65 deficiency, repression of NF-kappaB with the IkappaB alpha-SR transdominant inhibitor or with muscle-specific deletion of IKKbeta resulted in similar increases in total fiber numbers as well as an up-regulation of myogenic gene products. Upon further characterization of early postnatal muscle, we observed that NF-kappaB activity progressively declines within the first few weeks of development. At birth, the majority of this activity is compartmentalized to muscle fibers, but by neonatal day 8 NF-kappaB activity from the myofibers diminishes, and instead, stromal fibroblasts become the main cellular compartment within the muscle that contains active NF-kappaB. We find that NF-kappaB functions in these fibroblasts to regulate inducible nitric-oxide synthase expression, which we show is important for myoblast fusion during the growth and maturation process of skeletal muscle. Together, these data broaden our understanding of NF-kappaB during development by showing that in addition to its role as a negative regulator of myogenesis, NF-kappaB also regulates nitric-oxide synthase expression within stromal fibroblasts to stimulate myoblast fusion and muscle hypertrophy.


Subject(s)
Fibroblasts/metabolism , Muscle Development/physiology , Muscle, Skeletal/growth & development , Myoblasts, Skeletal/metabolism , Transcription Factor RelA/metabolism , Animals , Gene Expression Regulation, Enzymologic/physiology , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Transcription Factor RelA/genetics
19.
J Cell Biochem ; 106(1): 42-51, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19016262

ABSTRACT

Studies support that NF-kappaB functions in cellular growth through the transcriptional regulation of cyclin D1, but whether such regulation is attributed to a single NF-kappaB subunit remains unclear. To address this issue we examined endogenous cyclin D1 levels during cell cycle re-entry in mouse embryonic fibroblasts (MEFs) lacking specific NF-kappaB signaling subunits. Results showed that each of these subunits were dispensable for regulating cyclin D1 transcription. However, we found that resulting cyclin D1 protein was severely reduced in MEFs lacking only RelA/p65. Cyclohexamide treatment revealed that this regulation was due to an increase in protein turnover. Similar downregulation of cyclin D1 protein, but not RNA, was observed in vivo in multiple tissues lacking RelA/p65. Co-immunoprecipitation analysis also showed that RelA/p65 and cyclin D1 were capable of interacting, thus providing a possible explanation for cyclin D1 protein stability. In addition, although the decrease in cyclin D1 in RelA/p65(-/-) MEFs was concomitant with lower CDK4 activity during cell cycle re-entry, this was not sufficient to affect S phase progression. Nevertheless, similar decreases in cyclin D1 protein in primary RelA/p65(-/-) myoblasts was adequate to accelerate cell cycle exit and differentiation of these cells. Based on these findings we conclude that RelA/p65 functions as a specific regulator of cyclin D1 protein stability, necessary for proper cell cycle withdrawal during skeletal myogenesis.


Subject(s)
Cell Cycle/physiology , Cyclin D1/metabolism , Muscle Development/physiology , Muscle, Skeletal/cytology , Transcription Factor RelA/metabolism , Animals , Cell Differentiation , Cells, Cultured , Cyclin D1/genetics , Fibroblasts , Mice , Mice, Transgenic , Myoblasts/metabolism , Protein Stability , Protein Subunits/metabolism , RNA, Messenger/metabolism
20.
J Cell Biol ; 180(4): 787-802, 2008 Feb 25.
Article in English | MEDLINE | ID: mdl-18299349

ABSTRACT

Nuclear factor kappaB (NF-kappaB) is involved in multiple skeletal muscle disorders, but how it functions in differentiation remains elusive given that both anti- and promyogenic activities have been described. In this study, we resolve this by showing that myogenesis is controlled by opposing NF-kappaB signaling pathways. We find that myogenesis is enhanced in MyoD-expressing fibroblasts deficient in classical pathway components RelA/p65, inhibitor of kappaB kinase beta (IKKbeta), or IKKgamma. Similar increases occur in myoblasts lacking RelA/p65 or IKKbeta, and muscles from RelA/p65 or IKKbeta mutant mice also contain higher fiber numbers. Moreover, we show that during differentiation, classical NF-kappaB signaling decreases, whereas the induction of alternative members IKKalpha, RelB, and p52 occurs late in myogenesis. Myotube formation does not require alternative signaling, but it is important for myotube maintenance in response to metabolic stress. Furthermore, overexpression or knockdown of IKKalpha regulates mitochondrial content and function, suggesting that alternative signaling stimulates mitochondrial biogenesis. Together, these data reveal a unique IKK/NF-kappaB signaling switch that functions to both inhibit differentiation and promote myotube homeostasis.


Subject(s)
I-kappa B Kinase/metabolism , Mitochondria/metabolism , Muscle Development/genetics , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , NF-kappa B/metabolism , Animals , Animals, Newborn , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Down-Regulation/genetics , Gene Expression Regulation, Developmental/genetics , I-kappa B Kinase/genetics , Mice , Mice, Transgenic , Mitochondria/ultrastructure , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Myoblasts, Skeletal/ultrastructure , Signal Transduction/genetics , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...