Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Med ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284953

ABSTRACT

Immune checkpoint inhibition (ICI) with chemotherapy is now the standard of care for stage II-III triple-negative breast cancer; however, it is largely unknown for which patients ICI without chemotherapy could be an option and what the benefit of combination ICI could be. The adaptive BELLINI trial explored whether short combination ICI induces immune activation (primary end point, twofold increase in CD8+ T cells or IFNG), providing a rationale for neoadjuvant ICI without chemotherapy. Here, in window-of-opportunity cohorts A (4 weeks of anti-PD-1) and B (4 weeks of anti-PD-1 + anti-CTLA4), we observed immune activation in 53% (8 of 15) and 60% (9 of 15) of patients, respectively. High levels of tumor-infiltrating lymphocytes correlated with response. Single-cell RNA sequencing revealed that higher pretreatment tumor-reactive CD8+ T cells, follicular helper T cells and shorter distances between tumor and CD8+ T cells correlated with response. Higher levels of regulatory T cells after treatment were associated with nonresponse. Based on these data, we opened cohort C for patients with high levels of tumor-infiltrating lymphocytes (≥50%) who received 6 weeks of neoadjuvant anti-PD-1 + anti-CTLA4 followed by surgery (primary end point, pathological complete response). Overall, 53% (8 of 15) of patients had a major pathological response (<10% viable tumor) at resection, with 33% (5 of 15) having a pathological complete response. All cohorts met Simon's two-stage threshold for expansion to stage II. We observed grade ≥3 adverse events for 17% of patients and a high rate (57%) of immune-mediated endocrinopathies. In conclusion, neoadjuvant immunotherapy without chemotherapy demonstrates potential efficacy and warrants further investigation in patients with early triple-negative breast cancer. ClinicalTrials.gov registration: NCT03815890 .

2.
Nat Cancer ; 4(4): 535-549, 2023 04.
Article in English | MEDLINE | ID: mdl-37038006

ABSTRACT

Invasive lobular breast cancer (ILC) is the second most common histological breast cancer subtype, but ILC-specific trials are lacking. Translational research revealed an immune-related ILC subset, and in mouse ILC models, synergy between immune checkpoint blockade and platinum was observed. In the phase II GELATO trial ( NCT03147040 ), patients with metastatic ILC were treated with weekly carboplatin (area under the curve 1.5 mg ml-1 min-1) as immune induction for 12 weeks and atezolizumab (PD-L1 blockade; triweekly) from the third week until progression. Four of 23 evaluable patients had a partial response (17%), and 2 had stable disease, resulting in a clinical benefit rate of 26%. From these six patients, four had triple-negative ILC (TN-ILC). We observed higher CD8+ T cell infiltration, immune checkpoint expression and exhausted T cells after treatment. With this GELATO trial, we show that ILC-specific clinical trials are feasible and demonstrate promising antitumor activity of atezolizumab with carboplatin, particularly for TN-ILC, and provide insights for the design of highly needed ILC-specific trials.


Subject(s)
Carcinoma, Lobular , Triple Negative Breast Neoplasms , Humans , B7-H1 Antigen , Carboplatin/therapeutic use , Carcinoma, Lobular/drug therapy , Carcinoma, Lobular/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
3.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32753545

ABSTRACT

Treatment of metastatic melanoma with autologous tumor infiltrating lymphocytes (TILs) is currently applied in several centers. Robust and remarkably consistent overall response rates, of around 50% of treated patients, have been observed across hospitals, including a substantial fraction of durable, complete responses. PURPOSE: Execute a phase I/II feasibility study with TIL therapy in metastatic melanoma at the Netherlands Cancer Institute, with the goal to assess feasibility and potential value of a randomized phase III trial. EXPERIMENTAL: Ten patients were treated with TIL therapy. Infusion products and peripheral blood samples were phenotypically characterized and neoantigen reactivity was assessed. Here, we present long-term clinical outcome and translational data on neoantigen reactivity of the T cell products. RESULTS: Five out of 10 patients, who were all anti-PD-1 naïve at time of treatment, showed an objective clinical response, including two patients with a complete response that are both ongoing for more than 7 years. Immune monitoring demonstrated that neoantigen-specific T cells were detectable in TIL infusion products from three out of three patients analyzed. For six out of the nine neoantigen-specific T cell responses detected in these TIL products, T cell response magnitude increased significantly in the peripheral blood compartment after therapy, and neoantigen-specific T cells were detectable for up to 3 years after TIL infusion. CONCLUSION: The clinical results from this study confirm the robustness of TIL therapy in metastatic melanoma and the potential role of neoantigen-specific T cell reactivity. In addition, the data from this study supported the rationale to initiate an ongoing multicenter phase III TIL trial.


Subject(s)
Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/genetics , T-Lymphocytes/metabolism , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Melanoma/pathology , Middle Aged
5.
Nat Med ; 25(6): 920-928, 2019 06.
Article in English | MEDLINE | ID: mdl-31086347

ABSTRACT

The efficacy of programmed cell death protein 1 (PD-1) blockade in metastatic triple-negative breast cancer (TNBC) is low1-5, highlighting a need for strategies that render the tumor microenvironment more sensitive to PD-1 blockade. Preclinical research has suggested immunomodulatory properties for chemotherapy and irradiation6-13. In the first stage of this adaptive, non-comparative phase 2 trial, 67 patients with metastatic TNBC were randomized to nivolumab (1) without induction or with 2-week low-dose induction, or with (2) irradiation (3 × 8 Gy), (3) cyclophosphamide, (4) cisplatin or (5) doxorubicin, all followed by nivolumab. In the overall cohort, the objective response rate (ORR; iRECIST14) was 20%. The majority of responses were observed in the cisplatin (ORR 23%) and doxorubicin (ORR 35%) cohorts. After doxorubicin and cisplatin induction, we detected an upregulation of immune-related genes involved in PD-1-PD-L1 (programmed death ligand 1) and T cell cytotoxicity pathways. This was further supported by enrichment among upregulated genes related to inflammation, JAK-STAT and TNF-α signaling after doxorubicin. Together, the clinical and translational data of this study indicate that short-term doxorubicin and cisplatin may induce a more favorable tumor microenvironment and increase the likelihood of response to PD-1 blockade in TNBC. These data warrant confirmation in TNBC and exploration of induction treatments prior to PD-1 blockade in other cancer types.


Subject(s)
Programmed Cell Death 1 Receptor/antagonists & inhibitors , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Adult , Aged , Antineoplastic Agents, Immunological/administration & dosage , B7-H1 Antigen/antagonists & inhibitors , Cisplatin/administration & dosage , Combined Modality Therapy , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Female , Humans , Middle Aged , Neoplasm Metastasis/genetics , Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Nivolumab/administration & dosage , Radiotherapy, Adjuvant , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
Nat Med ; 25(4): 612-619, 2019 04.
Article in English | MEDLINE | ID: mdl-30833751

ABSTRACT

Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.


Subject(s)
Aminoacyltransferases/metabolism , Antigens, Differentiation/metabolism , CD47 Antigen/metabolism , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Receptors, Immunologic/metabolism , Aminoacyltransferases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Mice, Transgenic , Neoplasms/pathology , Opsonin Proteins/metabolism , Pyrrolidonecarboxylic Acid/metabolism
7.
J Biotechnol ; 306S: 100007, 2019.
Article in English | MEDLINE | ID: mdl-34112376

ABSTRACT

In the past years, the demand for small batches of clinical grade plasmid DNA has been growing. For that purpose, we designed and qualified a scaled-down Good Manufacturing Practices (GMP) production method, able to produce small batches (1-4 mg) of plasmid. The developed method does not require any complex production equipment and utilizes only disposable production materials, which makes it easy to implement and simplifies line-clearance. We have successfully used this method to produce several small batches of two different plasmids. The produced plasmids, both formulated in an Electroporation Buffer, are mixed and filled into small, single-use, aliquots. Quality control confirmed the robustness of the developed method and a stability study showed that the final formulation is stable for at least two years. The final patient formulation will be subsequently used in a phase I/II clinical trial in which retina cells of patients with Age Related Macular Degeneration, are transfected. The presented production method can be generically used for other plasmid constructs and final formulation designs.

SELECTION OF CITATIONS
SEARCH DETAIL