Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Vox Sang ; 111(1): 22-32, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26918437

ABSTRACT

BACKGROUND AND OBJECTIVES: Damage-associated molecular patterns (DAMPs) are found in transfusion products, but their potential impacts are not fully understood. We examined the influence of manufacturing method on levels of mitochondrial (mt) DNA and extracellular vesicle (EV) DAMPs in red cell concentrates (RCCs). MATERIALS AND METHODS: Eighty-seven RCCs were prepared using nine different methods (6-15 units/method), including three apheresis, five whole blood (WB)-derived leucoreduced (LR) and one WB-derived non-LR method. On storage days 5 and 42, levels of mtDNA (by PCR) and number and cell of origin of EVs (by flow cytometry) were assessed in RCC supernatants. RESULTS: There was a 100-fold difference in mtDNA levels among methods, with highest levels in non-LR, followed by MCS+ and Trima apheresis RCCs. There was a 10-fold difference in EV levels among methods. RBC-derived CD235a+ EVs were found in fresh RCCs and increased in most during storage. Platelet-derived CD41a+ EVs were highest in non-LR and Trima RCCs and did not change during storage. WBC-derived EVs were low in most RCCs; CD14+ EVs increased in several RCCs during storage. CONCLUSION: DAMPs in RCCs vary by manufacturing method. MtDNA and EV could be informative quality markers that may be relevant to RCC immunomodulatory potential.


Subject(s)
Blood Preservation/methods , DNA, Mitochondrial/metabolism , Erythrocytes/cytology , Mitochondria/genetics , Blood Component Removal , DNA, Mitochondrial/genetics , Erythrocyte Count , Erythrocytes/metabolism , Extracellular Vesicles/metabolism , Flow Cytometry , Humans , Lipopolysaccharide Receptors/metabolism , P-Selectin/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Polymerase Chain Reaction , Time Factors
3.
Vox Sang ; 107(4): 351-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24976130

ABSTRACT

BACKGROUND AND OBJECTIVES: Transfusion is associated with a risk of infection and alloimmunization. Pathogen reduction using riboflavin and UV light (Mirasol treatment) inactivates pathogens and leucocytes. With increasing adoption of the technology in clinical use, regulatory agencies have recommended the introduction of quality control measures to monitor pathogen reduction efficacy. We sought to develop a real-time PCR-based assay to document the impact of pathogen reduction on the mitochondrial genome in blood components. MATERIALS AND METHODS: DNA was extracted from platelet and plasma components before and after treatment with riboflavin and UV light. Inhibition of PCR amplification of mitochondrial DNA (mtDNA) in short- and long-amplicon target regions, ranging from under 200 base pairs (bp) to over 1800 bp, was measured in treated relative to untreated components. RESULTS: Pathogen reduction of platelets using riboflavin and UV light resulted in inhibition of PCR amplification of long-amplicon mtDNA targets, demonstrating approximately 1 log reduction of amplification relative to untreated products. Amplification of short-amplicon mtDNA targets was not affected by treatment. Evaluation of 110 blinded platelet samples from the PREPAReS clinical trial resulted in prediction of treatment status with 100% accuracy. Pathogen reduction of plasma components resulted in similar levels of PCR inhibition, while testing of 30 blinded plasma samples resulted in prediction of treatment status with 93% accuracy. CONCLUSION: A differential sized amplicon real-time PCR assay of mitochondrial DNA effectively documents nucleic acid damage induced by Mirasol treatment of platelets. The use of the assay for plasma product pathogen reduction requires further investigation.


Subject(s)
Blood-Borne Pathogens/drug effects , Blood-Borne Pathogens/radiation effects , DNA, Mitochondrial/analysis , Mitochondria/genetics , Real-Time Polymerase Chain Reaction , Riboflavin/pharmacology , Ultraviolet Rays , Blood Platelets/metabolism , Blood Platelets/microbiology , DNA, Mitochondrial/standards , Humans , Plasma/microbiology , Quality Control , Real-Time Polymerase Chain Reaction/standards
4.
J Exp Med ; 194(1): 99-106, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-11435476

ABSTRACT

Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4(+)CD8(+) double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2(-/)-) or Src homology 2 domain--containing leukocyte protein of 76 kD (SLP-76)(-/)- mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2(-/)- progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3 epsilon and pre-T alpha mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2(-/)- mice with a TCR beta transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell-specific signals associated with development of DP thymocytes.


Subject(s)
DNA-Binding Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Receptors, Cell Surface , T-Lymphocytes/physiology , Transcription Factors , Animals , Bone Marrow/physiology , Cell Lineage , DNA-Binding Proteins/metabolism , Hematopoietic Stem Cells/physiology , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Leukemia, T-Cell/genetics , Mice , Mice, Transgenic , Receptor, Notch1 , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/metabolism , Signal Transduction , Thymus Gland/cytology
5.
Nat Med ; 6(11): 1278-81, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11062542

ABSTRACT

Hematopoietic stem cells give rise to progeny that either self-renew in an undifferentiated state or lose self-renewal capabilities and commit to lymphoid or myeloid lineages. Here we evaluated whether hematopoietic stem cell self-renewal is affected by the Notch pathway. Notch signaling controls cell fate choices in both invertebrates and vertebrates by inhibiting certain differentiation pathways, thereby permitting cells to either differentiate along an alternative pathway or to self-renew. Notch receptors are present in hematopoietic precursors and Notch signaling enhances the in vitro generation of human and mouse hematopoietic precursors, determines T- or B-cell lineage specification from a common lymphoid precursor and promotes expansion of CD8(+) cells. Here, we demonstrate that constitutive Notch1 signaling in hematopoietic cells established immortalized, cytokine-dependent cell lines that generated progeny with either lymphoid or myeloid characteristics both in vitro and in vivo. These data support a role for Notch signaling in regulating hematopoietic stem cell self-renewal. Furthermore, the establishment of clonal, pluripotent cell lines provides the opportunity to assess mechanisms regulating stem cell commitment and demonstrates a general method for immortalizing stem cell populations for further analysis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Membrane Proteins/physiology , Receptors, Cell Surface , Signal Transduction , Transcription Factors , Animals , B-Lymphocytes/immunology , Bone Marrow Cells/cytology , Cell Line, Transformed , Cells, Cultured , Cytokines/pharmacology , Gamma Rays , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Interleukin-11/pharmacology , Leukopoiesis , Mice , Mice, Inbred C57BL , Receptor, Notch1 , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , Thymus Gland/immunology , Transfection
6.
Immunity ; 11(3): 299-308, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10514008

ABSTRACT

Notch receptors regulate fate decisions in many cells. One outcome of Notch signaling is differentiation of bipotential precursors into one cell type versus another. To investigate consequences of Notch1 expression in hematolymphoid progenitors, mice were reconstituted with bone marrow (BM) transduced with retroviruses encoding a constitutively active form of Notch1. Although neither granulocyte or monocyte differentiation were appreciably affected, lymphopoiesis was dramatically altered. As early as 3 weeks following transplantation, mice receiving activated Notch1-transduced BM contained immature CD4+ CD8+ T cells in the BM and exhibited a simultaneous block in early B cell lymphopoiesis. These results suggest that Notch1 provides a key regulatory signal in determining T lymphoid versus B lymphoid lineage decisions, possibly by influencing lineage commitment from a common lymphoid progenitor cell.


Subject(s)
B-Lymphocytes/cytology , Membrane Proteins/metabolism , Receptors, Cell Surface , T-Lymphocytes/cytology , Transcription Factors , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Cell Lineage , Female , Gene Expression , Granulocytes/cytology , Humans , Leukopoiesis , Macrophages/cytology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Receptor, Notch1 , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...