Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-32817953

ABSTRACT

In an effort to identify therapeutic intervention strategies for the treatment of COVID-19, we have investigated a selection of FDA-approved small molecules and biologics that are commonly used to treat other human diseases. A investigation into 18 small molecules and 3 biologics was conducted in cell culture and the impact of treatment on viral titer was quantified by plaque assay. The investigation identified 4 FDA-approved small molecules, Maraviroc, FTY720 (Fingolimod), Atorvastatin and Nitazoxanide that were able to inhibit SARS-CoV-2 infection. Confocal microscopy with over expressed S-protein demonstrated that Maraviroc reduced the extent of S-protein mediated cell fusion as observed by fewer multinucleate cells in the context of drug-treatment. Mathematical modeling of drug-dependent viral multiplication dynamics revealed that prolonged drug treatment will exert an exponential decrease in viral load in a multicellular/tissue environment. Taken together, the data demonstrate that Maraviroc, Fingolimod, Atorvastatin and Nitazoxanide inhibit SARS-CoV-2 in cell culture.

2.
Viruses ; 13(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34452398

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Venezuelan Equine/drug effects , Host Microbial Interactions/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Encephalitis Virus, Venezuelan Equine/genetics , Horses , Humans , Proteome , Vero Cells , Viral Nonstructural Proteins/classification , Viral Nonstructural Proteins/genetics
3.
Viruses ; 13(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33572467

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than two million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin-a de novo designed synthetic small molecule that captures the biological properties of HDPs-on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is likely to be a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 against different strains of the virus in cell culture.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Guanidines/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , COVID-19/virology , Cell Culture Techniques , Cell Line , Chlorocebus aethiops , Defensins/pharmacology , Humans , Peptidomimetics/pharmacology , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
4.
Sci Rep ; 10(1): 21491, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293592

ABSTRACT

Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause permanent neurological sequelae in a small number of cases. VEEV is classified as a category B select agent due to ease of aerosolization and high retention of infectivity in the aerosol form. Currently, there are no FDA-approved vaccines or therapeutics available to combat VEEV infection. VEEV infection in vivo is characterized by extensive systemic inflammation that can exacerbate infection by potentially increasing the susceptibility of off-site cells to infection and dissemination of the virus. Hence, a therapeutic targeting both the infection and associated inflammation represents an unmet need. We have previously demonstrated that host defense peptides (HDPs), short peptides that are key components of the innate immune response, exhibit antiviral activity against a multitude of viruses including VEEV. In this study, we designed synthetic peptides derived from indolicidin, a naturally occurring HDP, and tested their efficacy against VEEV. Two candidate synthetic peptides inhibited VEEV replication by approximately 1000-fold and decreased the expression of inflammatory mediators such as IL1α, IL1ß, IFNγ, and TNFα at both the gene and protein expression levels. Furthermore, an increase in expression levels of genes involved in chemotaxis of leukocytes and anti-inflammatory genes such as IL1RN was also observed. Overall, we conclude that our synthetic peptides inhibit VEEV replication and the inflammatory burden associated with VEEV infection.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Encephalitis Virus, Venezuelan Equine/metabolism , Virus Replication/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Encephalitis Virus, Venezuelan Equine/genetics , Horses , Humans , Inflammation , Mice , Vero Cells
5.
Viruses ; 12(9)2020 09 13.
Article in English | MEDLINE | ID: mdl-32933112

ABSTRACT

Venezuelan equine encephalitis virus (VEEV), a mosquito transmitted alphavirus of the Togaviridae family, can cause a highly inflammatory and encephalitic disease upon infection. Although a category B select agent, no FDA-approved vaccines or therapeutics against VEEV currently exist. We previously demonstrated NF-κB activation and macromolecular reorganization of the IKK complex upon VEEV infection in vitro, with IKKß inhibition reducing viral replication. Mass spectrometry and confocal microscopy revealed an interaction between IKKß and VEEV non-structural protein 3 (nsP3). Here, using western blotting, a cell-free kinase activity assay, and mass spectrometry, we demonstrate that IKKß kinase activity can directly phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5. Alanine substitution mutations at sites 204/5, 142, or 134/5 reduced VEEV replication by >30-100,000-fold corresponding to a severe decrease in negative-strand synthesis. Serial passaging rescued viral replication and negative-strand synthesis, and sequencing of revertant viruses revealed reversion to the wild-type TC-83 phosphorylation capable amino acid sequences at nsP3 sites 204/5, 142, and 135. Generation of phosphomimetic mutants using aspartic acid substitutions at site 204/5 resulted in rescue of both viral replication and negative-strand RNA production, whereas phosphomimetic mutant 134/5 rescued viral replication but failed to restore negative-strand RNA levels, and phosphomimetic mutant 142 did not rescue VEEV replication. Together, these data demonstrate that IKKß can phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5, and suggest that phosphorylation is essential for negative-strand RNA synthesis at site 204/5, but may be important for infectious particle production at site 134/5.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Venezuelan Equine/drug effects , Encephalitis Virus, Venezuelan Equine/metabolism , I-kappa B Kinase/metabolism , Viral Nonstructural Proteins/metabolism , Aedes , Animals , Cell Line , Chlorocebus aethiops , Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine , Humans , Mutation , NF-kappa B/metabolism , Phosphorylation , Vero Cells , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
6.
Viruses ; 11(12)2019 12 12.
Article in English | MEDLINE | ID: mdl-31842327

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a category B select agent pathogen that can be aerosolized. Infections in murine models and humans can advance to an encephalitic phenotype which may result in long-term neurological complications or death. No specific FDA-approved treatments or vaccines are available for the treatment or prevention of VEEV infection. Neurotropic viral infections have two damaging components: neuronal death caused by viral replication, and damage from the subsequent inflammatory response. Reducing the level of inflammation may lessen neurological tissue damage that often arises following VEEV infection. In this study, three commercially available anti-inflammatory drugs, Celecoxib, Rolipram, and Tofacitinib, were evaluated for antiviral activity in an astrocyte and a microglial model of VEEV infection. The inhibitors were tested against the vaccine strain VEEV TC-83, as well as the wild-type VEEV Trinidad donkey strain. Celecoxib, Tofacitinib, and Rolipram significantly decreased viral titers both after pre-treatment and post-treatment of infected cells. VEEV Trinidad Donkey (TrD) titers were reduced 6.45-fold in cells treated with 50 µM of Celecoxib, 2.45-fold when treated with 50 µM of Tofacitinib, and 1.81-fold when treated with 50 µM of Rolipram. Celecoxib was also shown to decrease inflammatory gene expression in the context of TC-83 infection. Overall, Celecoxib demonstrated potency as a countermeasure strategy that slowed VEEV infection and infection-induced inflammation in an in vitro model.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Drug Repositioning , Encephalitis Virus, Venezuelan Equine/drug effects , Encephalomyelitis, Venezuelan Equine/drug therapy , Encephalomyelitis, Venezuelan Equine/virology , Virus Replication/drug effects , Animals , Astrocytes/drug effects , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Drug Approval , Humans , Microglia/drug effects , United States , United States Food and Drug Administration
7.
Antiviral Res ; 164: 61-69, 2019 04.
Article in English | MEDLINE | ID: mdl-30738837

ABSTRACT

Venezuelan equine encephalitis virus (VEEV), a new world alphavirus belonging to the Togaviridae family, causes periodic disease outbreaks in humans and equines with high associated mortality and morbidity. VEEV is highly infectious via the aerosol route and so has been developed as a biological weapon (Hawley and Eitzen, 2001). Despite its current classification as a category B select agent, there are no FDA approved vaccines or therapeutics to counter VEEV infections. Here we utilize a naturally occurring host defense peptide, LL-37, as a therapeutic strategy to inhibit VEEV multiplication in infected cells. LL-37 has previously demonstrated activity against several viruses by directly interacting with viral particles and indirectly by establishing an antiviral state in the host cell. We show that LL-37 exhibited potent antiviral activity against VEEV by inhibiting viral replication. Genomic RNA copies of the TC-83 strain of VEEV and viral titers were significantly reduced compared to non-treated controls. LL-37 also inhibited the virulent Trinidad Donkey (TrD) strain of VEEV. Entry assays revealed a robust reduction of viral RNA copies at the early stages of TC-83 infection. Pre-incubation of cells with LL-37 and TC-83 resulted in a strong inhibitory response, indicating that LL-37 impacts early stages of the infectious process. Confocal and electron microscopy images confirmed the aggregation of viral particles, which potentially accounts for entry prevention and hence reduced viral infection. LL-37 treatment also modulated type I interferon (IFN) expression in infected cells. LL-37 treatment dramatically increased IFNß1 expression in treated cells in a time-dependent manner. Our results establish LL-37 as a relevant and novel potential therapeutic strategy for the treatment of VEEV infections.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/pharmacology , Encephalitis Virus, Venezuelan Equine/drug effects , Virus Replication/drug effects , Cell Line , Encephalitis Virus, Venezuelan Equine/physiology , Humans , Viral Load , Cathelicidins
8.
Antiviral Res ; 163: 125-139, 2019 03.
Article in English | MEDLINE | ID: mdl-30695702

ABSTRACT

The New World alphaviruses, Venezuelan, eastern and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are important human pathogens due to their ability to cause varying levels of morbidity and mortality in humans. There is also concern about VEEV and EEEV being used as bioweapons. Currently, a FDA-approved antiviral is lacking for New World alphaviruses. In this review, the function of each viral protein is discussed with an emphasis on how these functions can be targeted by therapeutics. Both direct acting antivirals as well as inhibitors that impact host protein interactions with viral proteins are described. Non-structural protein 3 (nsP3), capsid, and E2 proteins have garnered attention in recent years, whereas little is known regarding host protein interactions of the other viral proteins and is an important avenue for future study.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Antiviral Agents/therapeutic use , Viral Proteins/chemistry , Alphavirus/physiology , Animals , Antiviral Agents/pharmacology , Cell Line , Clinical Trials as Topic , Host Microbial Interactions/drug effects , Humans , Mice , Virus Replication/drug effects
9.
Virulence ; 9(1): 1403-1421, 2018.
Article in English | MEDLINE | ID: mdl-30101649

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a neurotropic arbovirus that is highly infectious as an aerosol and can result in an encephalitic phenotype in infected individuals. VEEV infections are known to be associated with robust inflammation that eventually contributes to neurodegenerative phenotypes. In this study, we utilize the TC-83 strain of VEEV, which is known to induce the expression of IL-6, IL-8, and other pro-inflammatory cytokines. We had previously demonstrated that TC-83 infection resulted in changes in mitochondrial function, eventually resulting in mitophagy. In this manuscript, we provide data that links upstream mitochondrial dysfunction with downstream pro-inflammatory cytokine production in the context of microglia and astrocytoma cells. We also provide data on the role of bystander cells, which significantly contribute to the overall inflammatory load. Use of a mitochondrial-targeted antioxidant, mitoquinone mesylate, greatly reduced the inflammatory cytokine load and ameliorated bystander cell inflammatory responses more significantly than a broad-spectrum anti-inflammatory compound (BAY 11-7082). Our data suggest that the inflammatory mediators, especially IL-1ß, may prime naïve cells to infection and lead to increased infection rates in microglial and astrocytoma cells. Cumulatively, our data suggest that the interplay between mitochondrial dysfunction and inflammatory events elicited in a neuronal microenvironment during a TC-83 infection may contribute to the spread of infection.


Subject(s)
Cytokines/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/immunology , Neuroglia/immunology , Animals , Astrocytes/immunology , Astrocytes/virology , Astrocytoma/immunology , Astrocytoma/virology , Cell Line, Tumor , Humans , Inflammation , Membrane Potential, Mitochondrial , Microglia/immunology , Microglia/virology , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/pathology , Organophosphorus Compounds/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
10.
Proc Natl Acad Sci U S A ; 112(16): 4964-9, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25848015

ABSTRACT

The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.


Subject(s)
Biomass , Carbohydrate Metabolism , Hydrogen/metabolism , Metabolic Engineering/methods , Models, Theoretical , Carbon Dioxide/metabolism , Kinetics , Metabolic Networks and Pathways , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...