Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Cryo Letters ; 45(4): 257-268, 2024.
Article in English | MEDLINE | ID: mdl-38809790

ABSTRACT

BACKGROUND: Little is known about the effects of different seasons on the cryopreservation success of buffalo sperm in terms of kinematics and sperm functional parameters. OBJECTIVE: To study the effect of three seasons (winter, comfort and summer) and cryopreservation on sperm kinematics and functional properties in buffalo bulls. MATERIALS AND METHODS: Semen ejaculates (n = 90) collected during three seasons i.e. winter (n = 30), comfort (n = 30), summer (n = 30) were evaluated for sperm kinematics and functional properties. RESULTS: Sperm kinematics with respect to total (TM), progressive (PM) and rapid motility (RM) was higher (P < 0.05) in fresh sperm compared to sperm that had been frozen-thawed. Similarly, all kinematic parameters [viz. average path velocity (VAP), straight linear velocity (VSL), curvilinear velocity (VCL), beats cross frequency (BCF), lateral head displacement (ALH), linearity (LIN) and straightness (STR)] were higher (P < 0.01) at the fresh stage. With respect to season, frozen-thawed semen TM (57.67 ± 115 %), PM (50.2 ± 1.15 %) and RM (51.6 ± 1.19 %) were higher (P < 0.01) when using sperm collected during winter. The stage of cryopreservation (i.e., equilibration and freeze-thawing) also showed significant effects (P < 0.01) on mitochondrial superoxide positive status (MSPS), mitochondrial membrane potential (MMP), acrosome status and intra-cellular calcium status. CONCLUSION: The season of sperm collection and cryopreservation have significant effects on buffalo bull sperm kinematics and functional properties. Doi.org/10.54680/fr24410110612.


Subject(s)
Acrosome , Buffaloes , Calcium , Cryopreservation , Mitochondria , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Cryopreservation/veterinary , Cryopreservation/methods , Male , Buffaloes/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/physiology , Calcium/metabolism , Mitochondria/metabolism , Biomechanical Phenomena , Seasons , Membrane Potential, Mitochondrial , Semen Analysis/veterinary
2.
Phys Rev Lett ; 131(19): 192301, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000395

ABSTRACT

Understanding the role of parton mass and Casimir color factors in the quantum chromodynamics parton shower represents an important step in characterizing the emission properties of heavy quarks. Recent experimental advances in jet substructure techniques have provided the opportunity to isolate and characterize gluon emissions from heavy quarks. In this Letter, the first direct experimental constraint on the charm-quark splitting function is presented, obtained via the measurement of the groomed shared momentum fraction of the first splitting in charm jets, tagged by a reconstructed D^{0} meson. The measurement is made in proton-proton collisions at sqrt[s]=13 TeV, in the low jet transverse-momentum interval of 15≤p_{T}^{jet ch}<30 GeV/c where the emission properties are sensitive to parton mass effects. In addition, the opening angle of the first perturbative emission of the charm quark, as well as the number of perturbative emissions it undergoes, is reported. Comparisons to measurements of an inclusive-jet sample show a steeper splitting function for charm quarks compared with gluons and light quarks. Charm quarks also undergo fewer perturbative emissions in the parton shower, with a reduced probability of large-angle emissions.

3.
J Phys Chem A ; 127(43): 9052-9068, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37856324

ABSTRACT

The sequence of elementary steps leading to reductive ammonia formation from N2 and H2 catalyzed by a Fe16 cluster is studied using generalized gradient approximation density functional theory and an all-electron basis set of triple-ζ quality. The computational methods are validated by comparison to experimental data such as binding energies where possible. First, the associative and dissociative attachment of N2 to Fe16 is considered, followed by exploration of the pathways leading to distal (Fe16-N-NH2) and enzymatic (NFe16-NH2) formation of an amino group. Next, the pathways leading to NH3 formation in both distal and enzymatic cases are examined. Two mechanisms for NH3 detachment have been discovered. An interesting peculiarity of the pathways is that they often proceed with total spin fluctuations, which are related to the rupture and formation of bonds on the surface of the catalyst over the course of the reactions. The reaction Fe16 + N2 + 2H2 → Fe16NH + NH3 is found to be exothermic by 1.02 eV (93.8 kJ/mol).

4.
Phys Rev Lett ; 131(10): 102302, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739380

ABSTRACT

The most precise measurements to date of the _{Λ}^{3}H lifetime τ and Λ separation energy B_{Λ} are obtained using the data sample of Pb-Pb collisions at sqrt[s_{NN}]=5.02 TeV collected by ALICE at the LHC. The _{Λ}^{3}H is reconstructed via its charged two-body mesonic decay channel (_{Λ}^{3}H→^{3}He+π^{-} and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)] ps and B_{Λ}=[102±63(stat)±67(syst)] keV are compatible with predictions from effective field theories and confirm that the _{Λ}^{3}H structure is consistent with a weakly bound system.

5.
Phys Rev Lett ; 131(4): 042303, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566833

ABSTRACT

We study the polarization of inclusive J/ψ produced in Pb-Pb collisions at sqrt[s_{NN}]=5.02 TeV at the LHC in the dimuon channel, via the measurement of the angular distribution of its decay products. We perform the study in the rapidity region 2.5

6.
Phys Rev Lett ; 131(4): 041901, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566856

ABSTRACT

The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity (|η|<0.8) as a function of collision centrality in Pb-Pb collisions at sqrt[s_{NN}]=5.02 TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with a state-of-the-art coalescence calculation. While it describes the ratio of higher order cumulants of the antideuteron multiplicity distribution, it fails to describe quantitatively the magnitude of the correlation between antiproton and antideuteron production. On the other hand, thermal-statistical model calculations describe all the measured observables within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.

7.
Int J Obstet Anesth ; 54: 103637, 2023 05.
Article in English | MEDLINE | ID: mdl-36827944

ABSTRACT

BACKGROUND: Prediction of a difficult airway is of paramount importance for an anaesthesiologist. Various anatomical and physiological factors contribute to a difficult airway in pregnant females, especially those with pre-eclampsia. The aim of the study was to assess airway indices using both routinely used clinical methods and ultrasound. METHODS: Fifty-five non-pregnant females, 55 normotensive pregnant females and 55 females with pre-eclampsia were included in this prospective study. Clinical airway assessment was the modified Mallampati score, thyromental distance, hyomental distance, hyomental distance ratio, chest circumference, neck circumference and chest-to-neck circumference ratio. Sonographic assessment included tongue width, tongue volume, anterior neck soft tissue thickness at the level of hyoid, epiglottis and vocal cords, subglottic diameter, ratio of pre-epiglottic space to anterior, posterior and midpoint of anterior and posterior vocal folds. RESULTS: Several significant differences were observed between pregnant and non-pregnant females, with additional changes in pre-eclamptic females. These included clinical parameters such as the modified Mallampati score and sonographic measurements of tongue width, tongue volume, subglottic diameter, anterior neck soft tissue thickness at the level of hyoid, epiglottis and vocal cords, and the ratio of pre-epiglottic space to anterior, posterior and midpoint of anterior and posterior vocal folds. CONCLUSION: Routinely used clinical methods of airway assessment lack sensitivity and specificity. Ultrasound can visualise anatomical structures in the supraglottic and subglottic views and is encouraging as an airway assessment tool.


Subject(s)
Pre-Eclampsia , Pregnancy , Female , Humans , Prospective Studies , Pre-Eclampsia/diagnostic imaging , Tongue , Hyoid Bone , Intubation, Intratracheal/methods
8.
Chemphyschem ; 23(21): e202200277, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-35654746

ABSTRACT

Dissociation of CO2 on iron clusters was studied by using semilocal density functional theory and basis sets of triple-zeta quality. Fe2 , Fe4 , and Fe16 clusters were selected as the representative host clusters. When searching for isomers of Fen CO2 , n=2, 4 and 16 corresponding to carbon dioxide attachment to the host clusters, its reduction to O and CO, and to the complete dissociation, it was found that the total spin magnetic moments of the lowest energy states of the isomers are often quenched with respect to those of initial reagents Fen +CO2 . Dissociation pathways of the Fe2 +CO2 , Fe4 +CO2 , and Fe16 +CO2 reactions contain several transition states separated by the local minima states; therefore, a natural question is where do the spin flips occur? Since lifetimes of magnetically excited states were shown to be of the order of 100 fs, the search for the CO2 dissociation pathways was performed under the assumption that magnetic deexcitation may occur at the intermediate local minima. Two dissociation pathways were obtained for each Fen +CO2 reaction using the gradient-based methods. It was found that the Fe2 +CO2 reaction is endothermic with respect to both reduction and complete dissociation of CO2 , whereas the Fe4 +CO2 and Fe16 +CO2 reactions are exothermic to both reduction and complete dissociation of carbon dioxide. The CO2 reduction was found to be more favorable than its complete dissociation in the Fe4 case.


Subject(s)
Carbon Dioxide , Iron , Carbon Dioxide/metabolism , Isomerism
9.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34791210

ABSTRACT

Genomic selection (GS) is being increasingly adopted by the tree breeding community. Most of the GS studies in trees are focused on estimating additive genetic effects. Exploiting the dominance effects offers additional opportunities to improve genetic gain. To detect dominance effects, trait-relevant markers may be important compared to nonselected markers. Here, we used preselected markers to study the dominance effects in a Eucalyptus nitens (E. nitens) breeding population consisting of open-pollinated (OP) and controlled-pollinated (CP) families. We used 8221 trees from six progeny trials in this study. Of these, 868 progeny and 255 parents were genotyped with the E. nitens marker panel. Three traits; diameter at breast height (DBH), wood basic density (DEN), and kraft pulp yield (KPY) were analyzed. Two types of genomic relationship matrices based on identity-by-state (IBS) and identity-by-descent (IBD) were tested. Performance of the genomic best linear unbiased prediction (GBLUP) models with IBS and IBD matrices were compared with pedigree-based additive best linear unbiased prediction (ABLUP) models with and without the pedigree reconstruction. Similarly, the performance of the single-step GBLUP (ssGBLUP) with IBS and IBD matrices were compared with ABLUP models using all 8221 trees. Significant dominance effects were observed with the GBLUP-AD model for DBH. The predictive ability of DBH is higher with the GBLUP-AD model compared to other models. Similarly, the prediction accuracy of genotypic values is higher with GBLUP-AD compared to the GBLUP-A model. Among the two GBLUP models (IBS and IBD), no differences were observed in predictive abilities and prediction accuracies. While the estimates of predictive ability with additive effects were similar among all four models, prediction accuracies of ABLUP were lower than the GBLUP models. The prediction accuracy of ssGBLUP-IBD is higher than the other three models while the theoretical accuracy of ssGBLUP-IBS is consistently higher than the other three models across all three groups tested (parents, genotyped, and nongenotyped). Significant inbreeding depression was observed for DBH and KPY. While there is a linear relationship between inbreeding and DBH, the relationship between inbreeding and KPY is nonlinear and quadratic. These results indicate that the inbreeding depression of DBH is mainly due to directional dominance while in KPY it may be due to epistasis. Inbreeding depression may be the main source of the observed dominance effects in DBH. The significant dominance effect observed for DBH may be used to select complementary parents to improve the genetic merit of the progeny in E. nitens.


Subject(s)
Eucalyptus , Eucalyptus/genetics , Genome , Genomics/methods , Genotype , Humans , Models, Genetic , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
10.
J Phys Chem A ; 125(36): 7891-7899, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34464135

ABSTRACT

First-principles density functional theory calculations on neutral and singly negatively and positively charged iron clusters Fen and iron nitride clusters FenN and FenN2 (n = 1-10) in the range of 1 ≤ n ≤ 10 revealed that there is a strong competition between ferromagnetic and antiferromagnetic states especially in the FenN20,±1 cluster series. This phenomenon was related to superexchange via a bridging N atom between two iron atoms in the FenN20,±1 cluster series and to a double superexchange effect via a Fe atom shared by two N atoms in the FenN20,±1 series. A thorough examination of the structure-energy-spin state relationships in these clusters is conducted, leading to new insights and confirmation of available experimental results on structural parameters and dissociation energetics. The bond energies of both nitrogen atoms in the FenN2 series are approximately the same. They weakly depend on the charge of the host cluster and fluctuate around 5.5 eV when moving along the series. The energy of N2 desorption is relatively small; it varies by about 1.0 eV and depends on the charge of the cluster. The experimental finding that N2 dissociates on the Fen+ clusters beginning with n = 4 was supported by the results of our computations. Our computed values of the Fen+-N bonding energies agree with the experimental data within the experimental uncertainty bars. It was found that the attachment of one or two N atoms does not seriously affect the polarizability, electron affinity, or ionization energy of the host iron clusters independent of the charge.

11.
J Phys Chem A ; 125(20): 4409-4419, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33979167

ABSTRACT

The ground states of the neutral and anionic tetrafluoride and hexafluoride series of 3d-metal atoms from Sc to Zn were assigned by using a double-check approach in which the pure and hybrid density functional methods were interchangeably used. It was confirmed that all these neutral fluorides are superhalogens except for TiF4. The electron affinities of the hexafluorides were shown to be consistently higher than those of the tetrafluorides in accordance with the superhalogen conception of the extra electron delocalization over a larger number of the electronegative ligands. In the search for mononuclear fluorides possessing higher electron affinities, we considered the M(F2)6- and M(F3)6- series where M = Sc-Zn. We found that the optimized geometrical structures in both series may be described as MF6-- k(F2), k = 3 and 6, of which the geometry of the MF6- core mimics that of the corresponding hexafluoride anion and the F2 dimers are kept in a bound state by polarizing forces. In these cases, the electron affinity is decreased by tenths of eV with respect to the electron affinity of the core hexafluorides due to a confinement of the extra electron by the F2 environment.

12.
Phys Chem Chem Phys ; 23(3): 2166-2178, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33438692

ABSTRACT

The coalescence of two Fe8N as well as the structure of the Fe16N2 cluster were studied using density functional theory with the generalized gradient approximation and a basis set of triple-zeta quality. It was found that the coalescence may proceed without an energy barrier and that the geometrical structures of the resulting clusters depend strongly on the mutual orientations of the initial moieties. The dissociation of N2 is energetically favorable on Fe16, and the nitrogen atoms share the same Fe atom in the lowest energy state of the Fe16N2 species. The attachment of two nitrogen atoms leads to a decrease in the total spin magnetic moment of the ground-state Fe16 host by 6 µB due to the peculiarities of chemical bonding in the magnetic clusters. In order to gain insight into the dependence of properties on charge and to estimate the bonding energies of both N atoms, we performed optimizations of Fe16N and the singly charged ions of both Fe16N2 and Fe16N. It was found that the electronic properties of the Fe16N2 cluster, such as electron affinity and ionization energy, do not appreciably depend on the attachment of nitrogen atoms but that the average binding energy per atom changes significantly. The lowering in total energy due to the attachment of two N atoms was found to be nearly independent of charge. The IR and Raman spectra were simulated for Fe16N2 and its ions, and it was found that the positions of the most intense peaks in the IR spectra strongly depend on charge and therefore present fingerprints of the charged states. The chemical bonding in the ground-state Fe16N20,±1 species was described in terms of the localized molecular orbitals.

13.
G3 (Bethesda) ; 10(10): 3751-3763, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32788286

ABSTRACT

Most of the genomic studies in plants and animals have used additive models for studying genetic parameters and prediction accuracies. In this study, we used genomic models with additive and nonadditive effects to analyze the genetic architecture of growth and wood traits in an open-pollinated (OP) population of Eucalyptus pellita We used two progeny trials consisting of 5742 trees from 244 OP families to estimate genetic parameters and to test genomic prediction accuracies of three growth traits (diameter at breast height - DBH, total height - Ht and tree volume - Vol) and kraft pulp yield (KPY). From 5742 trees, 468 trees from 28 families were genotyped with 2023 pre-selected markers from candidate genes. We used the pedigree-based additive best linear unbiased prediction (ABLUP) model and two marker-based models (single-step genomic BLUP - ssGBLUP and genomic BLUP - GBLUP) to estimate the genetic parameters and compare the prediction accuracies. Analyses with the two genomic models revealed large dominant effects influencing the growth traits but not KPY. Theoretical breeding value accuracies were higher with the dominance effect in ssGBLUP model for the three growth traits. Accuracies of cross-validation with random folding in the genotyped trees have ranged from 0.60 to 0.82 in different models. Accuracies of ABLUP were lower than the genomic models. Accuracies ranging from 0.50 to 0.76 were observed for within family cross-validation predictions with low relationships between training and validation populations indicating part of the functional variation is captured by the markers through short-range linkage disequilibrium (LD). Within-family phenotype predictive abilities and prediction accuracies of genetic values with dominance effects are higher than the additive models for growth traits indicating the importance of dominance effects in predicting phenotypes and genetic values. This study demonstrates the importance of genomic approaches in OP families to study nonadditive effects. To capture the LD between markers and the quantitative trait loci (QTL) it may be important to use informative markers from candidate genes.


Subject(s)
Eucalyptus , Animals , Eucalyptus/genetics , Genomics , Genotype , Models, Genetic , Pedigree , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
14.
J Phys Chem Lett ; 11(7): 2630-2636, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32178515

ABSTRACT

In this work, we report a comparative study of the gamma ray stability of perovskite solar cells based on a series of perovskite absorbers including MAPbI3 (MA = methylammonium), MAPbBr3, Cs0.15FA0.85PbI3 (FA = formamidinim), Cs0.1MA0.15FA0.75PbI3, CsPbI3, and CsPbBr3. We reveal that the composition of the perovskite material strongly affects the radiation stability of the solar cells. In particular, solar cells based on the MAPbI3 were found to be the most resistant to gamma rays since this perovskite undergoes rapid self-healing due to the special gas-phase chemistry analyzed with ab initio calculations. The fact that the solar cells based on MAPbI3 can withstand a 1000 kRad gamma ray dose without any noticeable degradation of the photovoltaic properties is particularly exciting and shifts the paradigm of research in this field toward designing more dynamic rather than intrinsically robust (e.g., inorganic) materials.

15.
Nanoscale Res Lett ; 13(1): 229, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30076473

ABSTRACT

In this research, a facile co-precipitation method was used to synthesize pure and Mg-doped ZnO nanoparticles (NPs). The structure, morphology, chemical composition, and optical and antibacterial activity of the synthesized nanoparticles (NPs) were studied with respect to pure and Mg-doped ZnO concentrations (0-7.5 molar (M) %). X-ray diffraction pattern confirmed the presence of crystalline, hexagonal wurtzite phase of ZnO. Scanning electron microscope (SEM) images revealed that pure and Mg-doped ZnO NPs were in the nanoscale regime with hexagonal crystalline morphology around 30-110 nm. Optical characterization of the sample revealed that the band gap energy (Eg) decreased from 3.36 to 3.04 eV with an increase in Mg2+ doping concentration. Optical absorption spectrum of ZnO redshifted as the Mg concentration varied from 2.5 to 7.5 M. Photoluminescence (PL) spectra showed UV emission peak around 400 nm. Enhanced visible emission between 430 and 600 nm with Mg2+ doping indicated the defect density in ZnO by occupying Zn2+ vacancies with Mg2+ ions. Photocatalytic studies revealed that 7.5% Mg-doped ZnO NPs exhibited maximum degradation (78%) for Rhodamine B (RhB) dye under UV-Vis irradiation. Antibacterial studies were conducted using Gram-positive and Gram-negative bacteria. The results demonstrated that doping with Mg ions inside the ZnO matrix had enhanced the antibacterial activity against all types of bacteria and its performance was improved with successive increment in Mg ion concentration inside ZnO NPs.

16.
Phys Rev Lett ; 119(10): 102301, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28949169

ABSTRACT

The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p_{T} region inaccessible by direct jet identification. In these measurements pseudorapidity (Δη) and azimuthal (Δφ) differences are used to extract the shape of the near-side peak formed by particles associated with a higher p_{T} trigger particle (1

17.
Eur Phys J C Part Fields ; 77(5): 339, 2017.
Article in English | MEDLINE | ID: mdl-28943788

ABSTRACT

The invariant differential cross sections for inclusive [Formula: see text] and [Formula: see text] mesons at midrapidity were measured in pp collisions at [Formula: see text] TeV for transverse momenta [Formula: see text] GeV/c and [Formula: see text] GeV/c, respectively, using the ALICE detector. This large range in [Formula: see text] was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a new single-cluster, shower-shape based method was developed for the identification of high-[Formula: see text] neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/[Formula: see text], the measured cross sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the [Formula: see text], and between 30-50% for the [Formula: see text] meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10-30%, except at [Formula: see text] GeV/[Formula: see text]. The new data can therefore be used to further improve the theoretical description of [Formula: see text] and [Formula: see text] meson production.

18.
Eur Phys J C Part Fields ; 77(6): 392, 2017.
Article in English | MEDLINE | ID: mdl-28775665

ABSTRACT

We present results on transverse momentum ([Formula: see text]) and rapidity ([Formula: see text]) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive [Formula: see text] and [Formula: see text] at forward rapidity ([Formula: see text]) as well as [Formula: see text]-to-[Formula: see text] cross section ratios. These quantities are measured in pp collisions at center of mass energies [Formula: see text] and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at [Formula: see text], 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full [Formula: see text] range, provided that both contributions are summed. In particular, it is found that for [Formula: see text] GeV/c the non-prompt contribution reaches up to 50% of the total charmonium yield.

19.
Phys Rev Lett ; 118(22): 222301, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28621989

ABSTRACT

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of sqrt[s_{NN}]=2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2

20.
Phys Rev Lett ; 118(16): 162302, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474923

ABSTRACT

We present the first measurement of the two-particle transverse momentum differential correlation function, P_{2}≡⟨Δp_{T}Δp_{T}⟩/⟨p_{T}⟩^{2}, in Pb-Pb collisions at sqrt[s_{NN}]=2.76 TeV. Results for P_{2} are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δϕ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P_{2}, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...