Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioelectrochemistry ; 160: 108784, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094447

ABSTRACT

Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.

2.
Biosensors (Basel) ; 13(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37754085

ABSTRACT

Here, we report magnetic nanoparticle-based biosensor platforms for the rapid detection of SARS-CoV-2 antibody responses in human serum. The use of the proposed system enabled the detection of anti-SARS-CoV-2 spike (S) and nucleocapsid (N) proteins at a concentration of ng/mL in both buffer and real serum samples. In particular, the protocol, which is considered an indicator of innate immunity after vaccination or post-infection, could be useful for the evaluation of antibody response. We included a total of 48 volunteers who either had COVID-19 but were not vaccinated or who had COVID-19 and were vaccinated with CoronoVac or Biontech. Briefly, in this study, which was planned as a cohort, serum samples were examined 3, 6, and 12 months from the time the volunteers' showed symptoms of COVID-19 with respect to antibody response in the proposed system. Anti-S Ab and anti-N Ab were detected with a limit of detection of 0.98 and 0.89 ng/mL, respectively. These data were confirmed with the corresponding commercial an electrochemiluminescence immunoassay (ECLIA) assays. Compared with ECLIA, more stable data were obtained, especially for samples collected over 6 months. After this period, a drop in the antibody responses was observed. Our findings showed that it could be a useful platform for exploring the dynamics of the immune response, and the proposed system has translational use potential for the clinic. In conclusion, the MNP-based biosensor platform proposed in this study, together with its counterparts in previous studies, is a candidate for determining natural immunity and post-vaccination antibody response, as well as reducing the workload of medical personnel and paving the way for screening studies on vaccine efficacy.


Subject(s)
COVID-19 , Magnetite Nanoparticles , Humans , Antibody Formation , SARS-CoV-2 , COVID-19/diagnosis , Antibodies, Viral
3.
Talanta ; 243: 123356, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35248943

ABSTRACT

The increasing mutation frequency of the SARS-CoV-2 virus and the emergence of successive variants have made correct diagnosis hard to perform. Developing efficient and accurate methods to diagnose infected patients is crucial to effectively mitigate the pandemic. Here, we developed an electrochemical immunosensor based on SARS-CoV-2 antibody cocktail-conjugated magnetic nanoparticles for the sensitive and accurate detection of the SARS-CoV-2 virus and its variants in nasopharyngeal swabs. The application of the antibody cocktail was compared with commercially available anti-SARS-CoV-2 S1 (anti-S1) and anti-S2 monoclonal antibodies. After optimization and calibration, the limit of detection (LOD) determination demonstrated a LOD = 0.53-0.75 ng/mL for the antibody cocktail-based sensor compared with 0.93 ng/mL and 0.99 ng/mL for the platforms using anti-S1 and anti-S2, respectively. The platforms were tested with human nasopharyngeal swab samples pre-diagnosed with RT-PCR (10 negatives and 40 positive samples). The positive samples include the original, alpha, beta, and delta variants (n = 10, for each). The polyclonal antibody cocktail performed better than commercial anti-S1 and anti-S2 antibodies for all samples reaching 100% overall sensitivity, specificity, and accuracy. It also showed a wide range of variants detection compared to monoclonal antibody-based platforms. The present work proposes a versatile electrochemical biosensor for the indiscriminate detection of the different variants of SARS-CoV-2 using a polyclonal antibody cocktail. Such diagnostic tools allowing the detection of variants can be of great efficiency and economic value in the fight against the ever-changing SARS-CoV-2 virus.


Subject(s)
Biosensing Techniques , COVID-19 , Magnetite Nanoparticles , COVID-19/diagnosis , Humans , Immunoassay , SARS-CoV-2/genetics
4.
Anal Bioanal Chem ; 413(29): 7251-7263, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622322

ABSTRACT

Supply shortage for the development and production of preventive, therapeutic, and diagnosis tools during the COVID-19 pandemic is an important issue affecting the wealthy and poor nations alike. Antibodies and antigens are especially needed for the production of immunological-based testing tools such as point-of-care tests. Here, we propose a simple and quick magnetic nanoparticle (MNP)-based separation/isolation approach for the repurposing of infected human samples to produce specific antibodies and antigen cocktails. Initially, an antibody cocktail was purified from serums via precipitation and immunoaffinity chromatography. Purified antibodies were conjugated onto MNPs and used as an affinity matrix to separate antigens. The characterization process was performed by ELISA, SDS-PAGE, electrochemistry, isothermal titration calorimetry, and LC-Q-TOF-MS/MS analyses. The MNP-separated peptides can be used for mass spectrometry-based as well as paper-based lateral flow assay diagnostic. The exploitation of the current workflow for the development of efficient diagnostic tools, specific treatments, and fundamental research can significantly impact the present or eventual pandemic. This workflow can be considered as a two birds, one stone-like strategy.


Subject(s)
Antibodies, Viral/isolation & purification , Antigens, Viral/isolation & purification , COVID-19/diagnosis , Cost-Benefit Analysis , Immunoassay/economics , SARS-CoV-2/isolation & purification , Viremia/virology , Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/virology , Calorimetry , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/immunology , Specimen Handling , Tandem Mass Spectrometry , Viremia/blood , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL