Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(14): 8303-8319, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38922686

ABSTRACT

The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.


Subject(s)
Carrier Proteins , DNA , Nuclear Proteins , Protein Binding , Humans , DNA/metabolism , DNA/genetics , DNA/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Mutation , Protein Domains , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , DNA Breaks, Double-Stranded , Binding Sites
2.
Eur J Med Chem ; 137: 488-503, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28624703

ABSTRACT

In our efforts to improve the efficacy of taxane-based microtubule (MT) stabilizing agents against tumor drug resistance mediated by multiple mechanisms, two clinically relevant factors were focused: i.e., P-glycoprotein and ßIII-tubulin overexpression. Based on the structure of C-seco taxoid 1 m (IDN5390) which was believed to more selectively interact with ßIII-tubulin than paclitaxel, we prepared a series of C-seco taxoids bearing various 7,9-O-linkages and/or different substituents at C2 and C3' positions. Some of them exhibited much more potent binding affinity to MTs and cytotoxicity than their C-seco parent compounds in drug resistant cells with both mechanisms. SAR analysis indicated that C2 modifications significantly enhanced MT binding but brought ambiguous influence to cytotoxicity whereas 7,9-linkage and C3' modifications enhance cytotoxicity more efficiently than improve MT binding. These observations illustrate a better translation of molecular binding effect to cellular activity by C ring closure and C3' modification than C2 modification in C-seco taxoids.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Taxoids/pharmacology , Tubulin/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microtubules/drug effects , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Taxoids/chemical synthesis , Taxoids/chemistry , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL