Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 88(12): 1019-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22712702

ABSTRACT

PURPOSE: To investigate the ability of human lymphocytes labeled with DNA-incorporated (125)I to exert an inhibitory (antiproliferative) bystander effect on co-cultured human colon adenocarcinoma LS174T cells in vitro. MATERIALS AND METHODS: Human peripheral blood lymphocytes were stimulated to synthesize DNA in the presence of phytohemagglutinin (PHA) and labeled with 5-[(125)I]iodo-2'-deoxyuridine. Human colon adenocarcinoma LS174T cells were co-cultured with the (125)I-labeled lymphocytes in various ratios for 5 days and the proliferation of the LS174T cells was assessed. Further, the supernatant media from these co-cultures were: (i) Transferred to LS174T cells and their proliferation measured after 5 days, (ii) used to assess the clonogenic survival of LS174T cells, and (iii) screened for factors that suppress growth. RESULTS: A significant reduction in the proliferation of LS174T cells was observed when co-cultured either with (125)I-labeled lymphocytes (56 ± 3.5%) or the supernatant media (52.5 ± 1.3%) obtained from these co-cultures. Clonogenic survival of LS174T cells grown in the supernatant media corroborated the decrease in tumor cell growth. CONCLUSION: The observed reduction in the proliferation of LS174T cells in presence of (125)I-labeled lymphocytes or media obtained from such co-cultures can be attributed to an inhibitory (antiproliferative) bystander effect, probably mediated by factor(s) released from the dying (125)I-labeled lymphocytes.


Subject(s)
Bystander Effect/radiation effects , Lymphocytes/cytology , Lymphocytes/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Coculture Techniques , Humans , Idoxuridine/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Iodine Radioisotopes/metabolism , Isotope Labeling , Lymphocytes/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism
2.
Int J Radiat Biol ; 88(12): 998-1008, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22732063

ABSTRACT

PURPOSE: To determine the possible effects of (125)I-to-DNA distance on the magnitude and mechanism of Auger-electron induced-double-strand break (DSB) production. MATERIALS AND METHODS: We have synthesized a series of (125)I-labeled Hoechst (H) derivatives ((125)IE-H, (125)IB-H, (125)I-C(8)-H and (125)I-C(12)-H). While all four molecules share a common DNA minor groove binding bis-benzimidazole motif, they are designed to position (125)I at varying distances from the DNA helix. Each Hoechst derivative was incubated at 4°C in phosphate buffered saline (PBS) together with supercoiled (SC) (3)H-pUC19 plasmid DNA (ratio 3:1) ± the •OH scavenger dimethyl sulfoxide (DMSO) (0.2 M). Aliquots were analyzed on agarose gels over time and DSB yields per decay of (125)I atom were determined. Docking of the iodinated compounds on a DNA molecule was carried out to determine the distance between the iodine atom and the central axis of DNA. RESULTS: In the absence of DMSO, the results show that the DSB yields decrease monotonically as the (125)I atom is distanced - by 10.5 Å to 13.9 Å - from the DNA helix ((125)IEH: 0.52 ± 0.01; (125)IB-H: 0.24 ± 0.03; (125)I-C(8)-H: 0.18 ± 0.02; (125)I-C(12)-H: 0.10 ± 0.00). In the presence of DMSO, DSB yields for (125)IEH (0.49 ± 0.02) and (125)IB-H (0.26 ± 0.04) remain largely unchanged indicating that DSB are entirely produced by direct effects. Strikingly, (125)I-C(8)-H or (125)I-C(12)-H, did not produce detectable DSB in the presence of DMSO under similar conditions suggesting when (125)I atom is positioned > 12 Å from the DNA, DSB are entirely produced by indirect effects. CONCLUSION: These results suggest that at a critical distance between the (125)I atom and the DNA helix, DSB production switches from an 'all' direct to an 'all' indirect mechanism, the latter situation being comparable to the decay of (125)I free in solution. These experimental findings were correlated with theoretical expectations based on microdosimetry.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA/chemistry , DNA/genetics , Electrons , Base Sequence , DNA, Superhelical/chemistry , DNA, Superhelical/genetics , Fluorescent Dyes/chemistry , Iodine Radioisotopes/chemistry , Models, Molecular , Nucleic Acid Conformation
3.
Anal Biochem ; 417(2): 242-6, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21741945

ABSTRACT

The widely used agarose gel electrophoresis method for assessing radiation-induced single-strand-break (SSB) yield in plasmid DNA involves measurement of the fraction of relaxed-circular (C) form that migrates independently from the intact supercoiled (SC) form. We rationalized that this method may underestimate the SSB yield since the position of the relaxed-circular form is not altered when the number of SSB per DNA molecule is >1. To overcome this limitation, we have developed a novel method that directly probes and quantifies SSBs. Supercoiled (3)H-pUC19 plasmid samples were irradiated with γ-rays, alkali-denatured, dephosphorylated, and kinated with γ-[(32)P]ATP, and the DNA-incorporated (32)P activities were used to quantify the SSB yields per DNA molecule, employing a standard curve generated using DNA molecules containing a known number of SSBs. The same irradiated samples were analyzed by agarose gel and SSB yields were determined by conventional methods. Comparison of the data demonstrated that the mean SSB yield per plasmid DNA molecule of [21.2±0.59]×10(-2)Gy(-1) as measured by direct probing is ~10-fold higher than that obtained from conventional gel-based methods. These findings imply that the SSB yields inferred from agarose gels need reevaluation, especially when they were utilized in the determination of radiation risk.


Subject(s)
DNA Breaks, Single-Stranded , DNA, Circular/analysis , DNA, Circular/radiation effects , DNA, Superhelical/analysis , DNA, Superhelical/radiation effects , Electrophoresis, Agar Gel/methods , Escherichia coli/chemistry , Escherichia coli/radiation effects , Evaluation Studies as Topic , Gamma Rays , Genetic Vectors , Plasmids/chemistry , Plasmids/genetics , Plasmids/radiation effects , Radioisotopes/analysis
4.
Int J Radiat Biol ; 84(12): 976-83, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19061121

ABSTRACT

PURPOSE: To determine double-strand-break (DSB) yields produced by decay of minor-groove-bound (123)I-labeled Hoechst 33342 ((123)IEH) in supercoiled (SC) and linear (L) forms of pUC19 DNA, to compare strand-break efficiency of (123)IEH with that of (125)IEH, and to examine the role of DNA topology in DSB induction by these Auger electron emitters. MATERIALS AND METHODS: Tritium-labeled SC and L pUC19 DNA were incubated with (123)IEH (0-10.9 MBq) at 4 degrees C. After (123)I had completely decayed (10 days), samples were analyzed on agarose gel, and single-strand-break (SSB) and DSB yields were measured. RESULTS: Each (123)I decay in SC DNA produces a DSB yield of 0.18 +/- 0.01. On the basis of DSB yields for (125)IEH (0.52 +/- 0.02 for SC and 1.62 +/- 0.07 for L, reported previously) and dosimetric expectations, a DSB yield of approximately 0.5 (3 x 0.18) per (123)I decay is expected for L DNA. However, no DSB are observed for the L form, even after approximately 2 x 10(11) decays of (123)I per microg DNA, whereas a similar number of (125)I decays produces DSB in approximately 40% of L DNA. CONCLUSION: (123)IEH-induced DSB yield for SC but not L DNA is consistent with the dosimetric expectations for Auger electron emitters. These studies highlight the role of DNA topology in DSB production by Auger emitters and underscore the failure of current theoretical dosimetric methods per se to predict the magnitude of DSB.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Breaks, Single-Stranded/radiation effects , DNA, Superhelical/radiation effects , Iodine Radioisotopes/chemistry , Benzimidazoles , Electrons , Nucleic Acid Conformation , Plasmids , Radioactivity
5.
Anal Biochem ; 381(1): 172-4, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18638445

ABSTRACT

Preparations of circular plasmid DNA in either supercoiled or nicked circular form often are contaminated with undesired linear DNA fragments arising from shearing/degradation of chromosomal DNA or linearization of plasmid DNA itself. We report a simple enzymatic method, using a combination of lambda exonuclease and RecJ(f), for the selective removal of linear DNA from such mixtures. lambda exonuclease digests one strand of linear duplex DNA in the 5' to 3' direction, whereas RecJ(f), a single-strand-specific exonuclease, digests the remaining complementary single strand into mononucleotides. This combination of exonucleases can remove linear DNA from a mixture of linear and supercoiled DNA, leaving the supercoiled form intact. Furthermore, the inability of lambda exonuclease to initiate digestion at nicks or gaps enables the removal of undesired linear DNA when nicked circular DNA has been enzymatically prepared from supercoiled DNA. This method can be useful in the preparation of homogeneous circular plasmid DNA required for therapeutic applications and biophysical studies.


Subject(s)
DNA, Superhelical/isolation & purification , Molecular Biology/methods , Plasmids/isolation & purification , DNA, Superhelical/chemistry , Electrophoresis, Agar Gel , Ethidium , Exonucleases/metabolism , Nucleic Acid Conformation , Plasmids/chemistry
6.
Radiat Res ; 170(1): 70-82, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18582152

ABSTRACT

From a structural perspective, the factors controlling and the mechanisms underlying the toxic effects of ionizing radiation remain elusive. We have studied the consequences of superhelical/torsional stress on the magnitude and mechanism of DSBs induced by low-energy, short-range, high-LET Auger electrons emitted by (125)I, targeted to plasmid DNA by m-[(125)I]iodo-p-ethoxyHoechst 33342 ((125)IEH). DSB yields per (125)I decay for torsionally relaxed nicked (relaxed circular) and linear DNA (1.74+/-0.11 and 1.62+/-0.07, respectively) are approximately threefold higher than that for torsionally strained supercoiled DNA (0.52+/-0.02), despite the same affinity of all forms for (125)IEH. In the presence of DMSO, the DSB yield for the supercoiled form remains unchanged, whereas that for nicked and linear forms decreases to 1.05+/-0.07 and 0.76+/-0.03 per (125)I decay, respectively. DSBs in supercoiled DNA therefore result exclusively from direct mechanisms, and those in nicked and linear DNA, additionally, from hydroxyl radical-mediated indirect effects. Iodine-125 decays produce hydroxyl radicals along the tracks of Auger electrons in small isolated pockets around the decay site. We propose that relaxation of superhelical stress after radical attack could move a single-strand break lesion away from these pockets, thereby preventing further breaks in the complementary strand that could lead to DSBs.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , Electrons , DNA/chemistry , DNA/metabolism , DNA/radiation effects , Plasmids/chemistry , Plasmids/metabolism , Plasmids/radiation effects , Titrimetry
7.
Radiat Res ; 166(2): 333-44, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16881734

ABSTRACT

Previously, the kinetics of strand break production by (125)I-labeled m-iodo-p-ethoxyHoechst 33342 ((125)IEH) in supercoiled (SC) plasmid DNA had demonstrated that approximately 1 DSB is produced per (125)I decay both in the presence and absence of the hydroxyl radical scavenger DMSO. In these experiments, an (125)IEH:DNA molar ratio of 42:1 was used. We now hypothesize that this DSB yield (but not the SSB yield) may be an overestimate due to subsequent decays occurring in any of the 41 (125)IEH molecules still bound to nicked (N) DNA. To test our hypothesis, (125)IEH was incubated with SC pUC19 plasmids ((125)IEH:DNA ratio of approximately 3:1) and the SSB and DSB yields were quantified after the decay of (125)I. As predicted, the number of DSBs produced per (125)I decay is one-half that reported previously ( approximately 0.5 compared to approximately 1, +/- DMSO) whereas the number of SSBs ( approximately 3/(125)I decay) is similar to that obtained previously ( approximately 90% are generated by OH radicals). Direct visualization by atomic force microscopy confirms formation of L and N DNA after (125)IEH decays in SC DNA and supports the strand break yields reported. These findings indicate that although SSB production is independent of the number of (125)IEH bound to DNA, the DSB yield can be augmented erroneously by (125)I decays occurring in N DNA. Further analysis indicates that 17% of SSBs and 100% of DSBs take place within the plasmid molecule in which an (125)IEH molecule decays, whereas 83% of SSBs are formed in neighboring plasmid DNA molecules.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , DNA Damage/drug effects , DNA/chemistry , DNA/drug effects , Plasmids/chemistry , Plasmids/drug effects , DNA/metabolism , DNA/ultrastructure , Dimethyl Sulfoxide/pharmacology , Electrophoresis, Agar Gel , Iodine Radioisotopes , Microscopy, Atomic Force , Models, Molecular , Nucleic Acid Conformation , Plasmids/ultrastructure
8.
Biochem Biophys Res Commun ; 338(3): 1507-14, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16274664

ABSTRACT

The most commonly occurring sialic acid, N-acetylneuraminic acid, is the repeating unit in polysialic acid chain of human neuronal cell adhesion molecule as well as in capsular polysialic acid of neuroinvasive bacteria, Escherichia coli K1 and Neisseria meningitidis. Sialic acid synthesis and polymerization occur in slightly different pathways in animals and bacteria. N-Acetylneuraminic acid (NeuNAc) is synthesized by the condensation of phosphoenolpyruvate and N-acetylmannosamine by NeuNAc synthase in bacteria. The mammalian homologue N-acetylneuraminic acid-9-phosphate (NeuNAc-9-P) synthase uses N-acetylmannosamine-6-phosphate in the condensation reaction to produce NeuNAc-9-P. Both subfamilies of sialic acid synthases possess N-terminal triosephosphate isomerase barrel domain and C-terminal antifreeze protein domain. We report cloning of the genes, expression, purification, and characterization of human NeuNAc-9-P synthase and N. meningitidis NeuNAc synthase. Stability of the purified enzymes and effects of pH and temperature on their activities were evaluated. Enzyme kinetics and preliminary mutagenesis experiments reveal the importance of C-terminal antifreeze protein domain and a conserved cysteine residue for the enzyme activities.


Subject(s)
Gene Expression/genetics , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Cloning, Molecular , Enzyme Stability , Humans , Hydrogen-Ion Concentration , Kinetics , Metals, Heavy/pharmacology , Molecular Weight , Mutagenesis, Site-Directed , Neisseria meningitidis/enzymology , Neisseria meningitidis/genetics , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/isolation & purification , Protein Binding , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL