Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(21): 4583-4596.e13, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37725977

ABSTRACT

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.


Subject(s)
Antigens, CD1 , Lipids , Humans , Antigen Presentation , Antigens, CD1/chemistry , Antigens, CD1/metabolism , Lipidomics , Lipids/chemistry , T-Lymphocytes , Amino Acid Motifs
2.
J Immunol ; 205(6): 1709-1717, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32817368

ABSTRACT

The generation of reliable mAb of unique and desired specificities serves as a valuable technology to study protein expression and function. However, standard approaches to mAb generation usually involve large-scale protein purification and intensive screening. In this study, we describe an optimized high-throughput proof-of-principle method for the expanded generation, enrichment, and screening of mouse hybridomas secreting mAb specific for a protein of interest. Briefly, we demonstrate that small amounts of a biotinylated protein of interest can be used to generate tetramers for use as prime-boost immunogens, followed by selective enrichment of Ag-specific B cells by magnetic sorting using the same tetramers prior to hybridoma generation. This serves two purposes: 1) to effectively expand both low- and high-affinity B cells specific for the antigenic bait during immunization and 2) to minimize subsequent laborious hybridoma efforts by positive selection of Ag-specific, Ab-secreting cells prior to hybridoma fusion and validation screening. Finally, we employ a rapid and inexpensive screening technology, CELLISA, a high-throughput validation method that uses a chimeric Ag fused to the CD3ζ signaling domain expressed on enzyme-generating reporter cells; these reporters can detect specific mAb in hybridoma supernatants via plate-bound Ab-capture arrays, thereby easing screening. Using this strategy, we generated and characterized novel mouse mAb specific for a viral immunoevasin, the mouse CMV m12 protein, and suggest that these mAb may protect mice from CMV infection via passive immunity.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Herpesviridae Infections/immunology , High-Throughput Screening Assays/methods , Muromegalovirus/metabolism , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/metabolism , B-Lymphocytes/immunology , Cell Line , Enzyme-Linked Immunosorbent Assay , Hybridomas , Immune Evasion , Immunization , Mice , Protein Multimerization , Vaccination
3.
Nat Commun ; 9(1): 4623, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397201

ABSTRACT

The interaction between natural killer (NK) cell inhibitory receptors and their cognate ligands constitutes a key mechanism by which healthy tissues are protected from NK cell-mediated lysis. However, self-ligand recognition remains poorly understood within the prototypical NKR-P1 receptor family. Here we report the structure of the inhibitory NKR-P1B receptor bound to its cognate host ligand, Clr-b. NKR-P1B and Clr-b interact via a head-to-head docking mode through an interface that includes a large array of polar interactions. NKR-P1B:Clr-b recognition is extremely sensitive to mutations at the heterodimeric interface, with most mutations severely impacting both Clr-b binding and NKR-P1B receptor function to implicate a low affinity interaction. Within the structure, two NKR-P1B:Clr-b complexes are cross-linked by a non-classic NKR-P1B homodimer, and the disruption of homodimer formation abrogates Clr-b recognition. These data provide an insight into a fundamental missing-self recognition system and suggest an avidity-based mechanism underpins NKR-P1B receptor function.


Subject(s)
Lectins, C-Type/chemistry , NK Cell Lectin-Like Receptor Subfamily B/chemistry , Receptors, Immunologic/chemistry , Receptors, Natural Killer Cell/chemistry , Animals , Carrier Proteins , Crystallography, X-Ray , HEK293 Cells , Humans , Lectins, C-Type/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Mutagenesis, Site-Directed , Mutation , NK Cell Lectin-Like Receptor Subfamily B/genetics , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains , Receptors, Immunologic/genetics , Receptors, Natural Killer Cell/genetics , X-Ray Diffraction
4.
Cell ; 169(1): 58-71.e14, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340350

ABSTRACT

Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.


Subject(s)
Killer Cells, Natural/immunology , Muromegalovirus/immunology , Receptors, Natural Killer Cell/immunology , Viral Proteins/metabolism , Animals , Antigens, Ly/metabolism , Cell Line , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Mice , NIH 3T3 Cells , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Rats
5.
J Biol Chem ; 291(36): 18740-52, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27385590

ABSTRACT

Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 µm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 µm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated ß2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C ß4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.


Subject(s)
Histocompatibility Antigen H-2D/chemistry , Killer Cells, Natural/chemistry , NK Cell Lectin-Like Receptor Subfamily A/chemistry , Animals , Crystallography, X-Ray , H-2 Antigens/chemistry , H-2 Antigens/genetics , H-2 Antigens/immunology , Histocompatibility Antigen H-2D/genetics , Histocompatibility Antigen H-2D/immunology , Killer Cells, Natural/immunology , Mice , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/immunology , Protein Domains , Protein Structure, Quaternary
6.
J Biol Chem ; 289(34): 23753-63, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24982419

ABSTRACT

The ability of CMVs to evade the immune system of the host is dependent on the expression of a wide array of glycoproteins, many of which interfere with natural killer cell function. In murine CMV, two large protein families mediate this immune-evasive function. Although it is established that the m145 family members mimic the structure of MHC-I molecules, the structure of the m02 family remains unknown. The most extensively studied m02 family member is m04, a glycoprotein that escorts newly assembled MHC-I molecules to the cell surface, presumably to avoid "missing self" recognition. Here we report the crystal structure of the m04 ectodomain, thereby providing insight into this large immunoevasin family. m04 adopted a ß-sandwich immunoglobulin variable (Ig-V)-like fold, despite sharing very little sequence identity with the Ig-V superfamily. In addition to the Ig-V core, m04 possesses several unique structural features that included an unusual ß-strand topology, a number of extended loops and a prominent α-helix. The m04 interior was packed by a myriad of hydrophobic residues that form distinct clusters around two conserved tryptophan residues. This hydrophobic core was well conserved throughout the m02 family, thereby indicating that murine CMV encodes a number of Ig-V-like molecules. We show that m04 binds a range of MHC-I molecules with low affinity in a peptide-independent manner. Accordingly, the structure of m04, which represents the first example of an murine CMV encoded Ig-V fold, provides a basis for understanding the structure and function of this enigmatic and large family of immunoevasins.


Subject(s)
Carrier Proteins/chemistry , Glycoproteins/chemistry , Immune Evasion , Viral Proteins/chemistry , Amino Acid Sequence , Carrier Proteins/metabolism , Crystallization , Glycoproteins/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...