Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005467

ABSTRACT

Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa . Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.

2.
Biomedicines ; 11(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38002080

ABSTRACT

Antibody-drug Conjugates (ADCs) are a powerful therapeutic modality for cancer treatment. ADCs are multi-functional biologics in which a disease-targeting antibody is conjugated to an effector payload molecule via a linker. The success of currently used ADCs has been largely attributed to the development of linker systems, which allow for the targeted release of cytocidal payload drugs inside cancer cells. Many lysosomal proteases are over expressed in human cancers. They can effectively cleave a variety of peptide sequences, which can be exploited for the design of ADC linker systems. As a well-established linker, valine-citrulline-p-aminobenzyl carbamate (ValCitPABC) is used in many ADCs that are already approved or under preclinical and clinical development. Although ValCitPABC and related linkers are readily cleaved by cathepsins in the lysosome while remaining reasonably stable in human plasma, many studies have shown that they are susceptible to carboxylesterase 1C (Ces1C) in mouse and rat plasma, which hinders the preclinical evaluation of ADCs. Furthermore, neutropenia and thrombocytopenia, two of the most commonly observed dose-limiting adverse effects of ADCs, are believed to result from the premature hydrolysis of ValCitPABC by human neutrophil elastase. In addition to ValCitPABC, the GGFG tetrapeptidyl-aminomethoxy linker is also cathepsin-cleavable and is used in the highly successful ADC drug, DS8201a. In addition to cathepsin-cleavable linkers, there is also growing interest in legumain-sensitive linkers for ADC development. Increasing plasma stability while maintaining lysosomal cleavability of ADC linkers is an objective of intensive current research. This review reports recent advances in the design and structure-activity relationship studies of various peptide/peptidomimetic linkers in this field.

3.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37843128

ABSTRACT

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Subject(s)
DNA Adducts , DNA , Animals , Female , Humans , Male , Rats , Chromatography, Liquid/methods , DNA/chemistry , DNA Adducts/genetics , Rodentia , Tandem Mass Spectrometry/methods
4.
Nucleic Acids Res ; 51(17): 9214-9226, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37572349

ABSTRACT

Bacteriophages and bacteria are engaged in a constant arms race, continually evolving new molecular tools to survive one another. To protect their genomic DNA from restriction enzymes, the most common bacterial defence systems, double-stranded DNA phages have evolved complex modifications that affect all four bases. This study focuses on modifications at position 7 of guanines. Eight derivatives of 7-deazaguanines were identified, including four previously unknown ones: 2'-deoxy-7-(methylamino)methyl-7-deazaguanine (mdPreQ1), 2'-deoxy-7-(formylamino)methyl-7-deazaguanine (fdPreQ1), 2'-deoxy-7-deazaguanine (dDG) and 2'-deoxy-7-carboxy-7-deazaguanine (dCDG). These modifications are inserted in DNA by a guanine transglycosylase named DpdA. Three subfamilies of DpdA had been previously characterized: bDpdA, DpdA1, and DpdA2. Two additional subfamilies were identified in this work: DpdA3, which allows for complete replacement of the guanines, and DpdA4, which is specific to archaeal viruses. Transglycosylases have now been identified in all phages and viruses carrying 7-deazaguanine modifications, indicating that the insertion of these modifications is a post-replication event. Three enzymes were predicted to be involved in the biosynthesis of these newly identified DNA modifications: 7-carboxy-7-deazaguanine decarboxylase (DpdL), dPreQ1 formyltransferase (DpdN) and dPreQ1 methyltransferase (DpdM), which was experimentally validated and harbors a unique fold not previously observed for nucleic acid methylases.


Subject(s)
Bacteriophages , Guanine , Bacteria/genetics , Bacteriophages/genetics , DNA/genetics , Guanine/analogs & derivatives
5.
J Am Chem Soc ; 145(12): 6838-6844, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36924109

ABSTRACT

Enzymatic peptide ligation holds great promise in the study of protein functions and development of protein therapeutics. Owing to their high catalytic efficiency and a minimal tripeptide recognition motif, peptidyl asparaginyl ligases (PALs) are particularly useful tools for bioconjugation. However, as an inherent limitation of transpeptidases, PAL-mediated ligation is reversible, requiring a large excess of one of the ligation partners to shift the reaction equilibrium in the forward direction. Herein, we report a method to make PAL-mediated intermolecular ligation irreversible by coupling it to glutaminyl cyclase (QC)-catalyzed pyroglutamyl formation. In this method, the acyl donor substrate of PALs is designed to have glutamine at the P1' position of the Asn-P1'-P2' tripeptide PAL recognition motif. Upon ligation with an acyl acceptor substrate, the acyl donor substrate releases a leaving group in which the exposed N-terminal glutamine is cyclized by QC, quenching the Gln Nα-amine in a lactam. Using this method, PAL-mediated ligation can achieve near-quantitative yields even at an equal molar ratio between the two ligation partners. We have demonstrated this method for a wide range of applications, including protein-to-protein ligations. We anticipate that this cascade enzymatic reaction scheme will make PAL enzymes well suited for numerous new uses in biotechnology.


Subject(s)
Glutamine , Proteins , Glutamine/metabolism , Peptides/chemistry , Ligases
6.
ACS Omega ; 6(46): 31236-31243, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34841167

ABSTRACT

Mosquito control by personal protection is one of the most efficient ways of curtailing deadly diseases such as malaria and dengue with the potential to save millions of lives per year. DEET (N,N-diethyl-3-methyl benzamide) is currently considered as the gold standard for mosquito repellents, being used for the past several decades. Control by DEET, however, is being threatened by emerging resistance among mosquitoes. To address this concern and also to improve protection times, we synthesized a novel series of 25 silicon-containing acyl piperidines using acid-amine coupling protocol and tested their activity against Aedes aegypti in mosquito-repellent assays. Several compounds from this series appear to possess good mosquito-repellent properties. Most notably, at 0.5 mg/cm2 concentrations, the mean protection time for NDS100100 was 756 min, which was higher than that of DEET (616 min). The details of design, synthesis, and biological evaluation are discussed herein.

7.
Angew Chem Int Ed Engl ; 60(41): 22207-22211, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34396662

ABSTRACT

Peptidyl asparaginyl ligases (PALs) are powerful tools for peptide macrocyclization. Herein, we report that a derivative of Asn, namely Nγ -hydroxyasparagine or Asn(OH), is an unnatural P1 substrate of PALs. By Asn(OH)-mediated cyclization, we prepared cyclic peptides as new matrix metalloproteinase 2 (MMP2) inhibitors displaying the hydroxamic acid moiety of Asn(OH) as the key pharmacophore. The most potent cyclic peptide (Ki =2.8±0.5 nM) was built on the hyperstable tetracyclic scaffold of rhesus theta defensin-1. The Asn(OH) residue in the cyclized peptides can also be readily oxidized to Asp. By this approach, we synthesized several bioactive Asp-containing cyclic peptides (MCoTI-II, kB2, SFTI, and integrin-targeting RGD peptides) that are otherwise difficult targets for PAL-catalyzed cyclization owing to unfavorable kinetics of the P1-Asp substrates. This study demonstrates that substrate engineering is a useful strategy to expand the application of PAL ligation in the synthesis of therapeutic cyclic peptides.


Subject(s)
Amino Acids/pharmacology , Asparagine/pharmacology , Enzyme Inhibitors/pharmacology , Peptide Synthases/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Amino Acids/chemistry , Asparagine/chemistry , Enzyme Inhibitors/chemistry , Peptide Synthases/metabolism , Peptides, Cyclic/chemistry , Substrate Specificity
8.
J Am Chem Soc ; 143(23): 8704-8712, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34096285

ABSTRACT

Peptide asparaginyl ligases (PALs) catalyze transpeptidation at the Asn residue of a short Asn-Xaa1-Xaa2 tripeptide motif. Due to their high catalytic activity toward the P1-Asn substrates at around neutral pH, PALs have been used extensively for peptide ligation at asparaginyl junctions. PALs also bind to aspartyl substrates, but only when the γCOOH of P1-Asp remains in its neutral, protonated form, which usually requires an acidic pH. However, this limits the availability of the amine nucleophile and, consequently, the ligation efficiency at aspartyl junctions. Because of this perceived inefficiency, the use of PALs for Asp-specific ligation remains largely unexplored. We found that PAL enzymes, such as VyPAL2, display appreciable catalytic activities toward P1-Asp substrates at pH 4-5, which are at least 2 orders of magnitude higher than that of sortase A, making them practically useful for both intra- and intermolecular ligations. This also allows sequential ligations, first at Asp and then at Asn junctions, because the newly formed aspartyl peptide bond is resistant to the ligase at the pH used for asparaginyl ligation in the second step. Using this pH-controlled orthogonal ligation method, we dually labeled truncated sfGFP with a cancer-targeting peptide and a doxorubicin derivative at the respective N- and C-terminal ends in the N-to-C direction. In addition, a fluorescein tag and doxorubicin derivative were tagged to an EGFR-targeting affibody in the C-to-N direction. This study shows that the pH-dependent catalytic activity of PAL enzymes can be exploited to prepare multifunction protein biologics for pharmacological applications.


Subject(s)
Asparagine/metabolism , Cysteine Endopeptidases/metabolism , Asparagine/chemistry , Biocatalysis , Cysteine Endopeptidases/chemistry , Hydrogen-Ion Concentration , Models, Molecular
9.
Anal Chem ; 92(18): 12460-12466, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32686399

ABSTRACT

Although the basic process of receptor-mediated endocytosis (RME) is well established, certain specific aspects, like the endosomal redox state, remain less characterized. Previous studies used chemically labeled ligands or antibodies with a FRET (fluorescence resonance energy transfer) probe to gauge the redox activity of the endocytic pathway with a limitation being their inability to track the apo receptor. New tools that allow direct labeling of a cell surface receptor with synthetic probes would aid in the study of its endocytic pathway and function. Herein, we use a peptide ligase, butelase 1, to label the human transferrin receptor 1 (TfR1) in established human cell lines with a designer disulfide FRET probe. This strategy enables us to obtain real-time live cell imaging of redox states in TfR1-mediated endocytosis, attesting a reducing environment in the endosomal compartments and the dynamics of TfR1 trafficking. A better understanding of endocytosis of different cell surface receptors has implications in designing strategies that hijack this natural process for intracellular drug delivery.


Subject(s)
Antigens, CD/analysis , Disulfides/chemistry , Endosomes/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Receptors, Transferrin/analysis , Antigens, CD/metabolism , Endosomes/metabolism , Humans , Oxidation-Reduction , Receptors, Transferrin/metabolism
10.
J Med Chem ; 62(17): 7788-7805, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31442049

ABSTRACT

Among the >120 modified ribonucleosides in the prokaryotic epitranscriptome, many tRNA modifications are critical to bacterial survival, which makes their synthetic enzymes ideal targets for antibiotic development. Here we performed a structure-based design of inhibitors of tRNA-(N1G37) methyltransferase, TrmD, which is an essential enzyme in many bacterial pathogens. On the basis of crystal structures of TrmDs from Pseudomonas aeruginosa and Mycobacterium tuberculosis, we synthesized a series of thienopyrimidinone derivatives with nanomolar potency against TrmD in vitro and discovered a novel active site conformational change triggered by inhibitor binding. This tyrosine-flipping mechanism is uniquely found in P. aeruginosa TrmD and renders the enzyme inaccessible to the cofactor S-adenosyl-l-methionine (SAM) and probably to the substrate tRNA. Biophysical and biochemical structure-activity relationship studies provided insights into the mechanisms underlying the potency of thienopyrimidinones as TrmD inhibitors, with several derivatives found to be active against Gram-positive and mycobacterial pathogens. These results lay a foundation for further development of TrmD inhibitors as antimicrobial agents.


Subject(s)
Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Tyrosine/pharmacology , tRNA Methyltransferases/antagonists & inhibitors , Binding Sites/drug effects , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Pseudomonas aeruginosa/enzymology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tyrosine/chemistry , tRNA Methyltransferases/metabolism
11.
Org Lett ; 20(24): 7790-7793, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30517009

ABSTRACT

A previously undescribed reaction involving the formation of a thiazolidin-5-imine linkage was developed for bioconjugation. Being highly specific and operating in aqueous media, this simple condensation reaction is used to chemoselectively label peptides, proteins, and living cells under physiological conditions without the need to use toxic catalysts or reducing reagents.


Subject(s)
Fluorescent Dyes/chemistry , Imines/chemistry , Optical Imaging , Proteins/analysis , Thiazolidines/chemistry , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Imines/chemical synthesis , Models, Molecular , Molecular Structure , Staining and Labeling , Thiazolidines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...