Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 8(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35735973

ABSTRACT

Indirect-imaging methods involve at least two steps, namely optical recording and computational reconstruction. The optical-recording process uses an optical modulator that transforms the light from the object into a typical intensity distribution. This distribution is numerically processed to reconstruct the object's image corresponding to different spatial and spectral dimensions. There have been numerous optical-modulation functions and reconstruction methods developed in the past few years for different applications. In most cases, a compatible pair of the optical-modulation function and reconstruction method gives optimal performance. A new reconstruction method, termed nonlinear reconstruction (NLR), was developed in 2017 to reconstruct the object image in the case of optical-scattering modulators. Over the years, it has been revealed that the NLR can reconstruct an object's image modulated by an axicons, bifocal lenses and even exotic spiral diffractive elements, which generate deterministic optical fields. Apparently, NLR seems to be a universal reconstruction method for indirect imaging. In this review, the performance of NLR isinvestigated for many deterministic and stochastic optical fields. Simulation and experimental results for different cases are presented and discussed.

2.
J Imaging ; 7(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34940719

ABSTRACT

Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.

3.
Appl Opt ; 60(10): B65-B80, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33798138

ABSTRACT

Holographic tomography (HT) is an advanced label-free optical microscopic imaging method used for biological studies. HT uses digital holographic microscopy to record the complex amplitudes of a biological sample as digital holograms and then numerically reconstruct the sample's refractive index (RI) distribution in three dimensions. The RI values are a key parameter for label-free bio-examination, which correlate with metabolic activities and spatiotemporal distribution of biophysical parameters of cells and their internal organelles, tissues, and small-scale biological objects. This article provides insight on this rapidly growing HT field of research and its applications in biology. We present a review summary of the HT principle and highlight recent technical advancement in HT and its applications.


Subject(s)
Holography/instrumentation , Holography/methods , Microscopy/instrumentation , Microscopy/methods , Animals , Cell Line , Computer Simulation , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Lasers , Metabolome , Models, Chemical , Organelles/ultrastructure , Refractometry , Single-Cell Analysis , Software
4.
Appl Opt ; 60(10): B81-B87, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33798139

ABSTRACT

Data acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy. Three different cases of sample rotation tomography were reconstructed for dense angle with a step rotation at every 2°, and for sparse angles with step rotation at every 5° and 10°. The three cases of tomographic reconstruction performance are analyzed with consideration for data processing using four noise-reduction techniques. The experimental results demonstrate potential capability in retaining the tomographic image quality, even at the sparse angle reconstructions, with the help of noise-reduction techniques.


Subject(s)
Holography/instrumentation , Holography/methods , Tomography/instrumentation , Tomography/methods , Deep Learning , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Optical Tweezers , Rotation , Saccharomycetales , Signal-To-Noise Ratio
5.
Sci Rep ; 9(1): 10489, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324823

ABSTRACT

In this study, a novel adaptive wavefront correction (AWC) technique is implemented on a compactly developed structured illumination holographic tomography (SI-HT) system. We propose a mechanical movement-free compact scanning architecture for SI-HT systems with AWC, implemented by designing and displaying a series of computer-generated holograms (CGH) composed of blazed grating with phase Fresnel lens on a phase-only spatial light modulator (SLM). In the proposed SI-HT, the aberrations of the optical system are sensed by digital holography and are used to design the CGH-based AWC to compensate the phase aberrations of the tomographic imaging system. The proposed method was validated using a standard Siemens star target, its potential application was demonstrated using a live candida rugosa sample, and its label-free three-dimensional refractive index profile was generated at its subcellular level. The experimental results obtained reveal the ability of the proposed method to enhance the imaging performance in both lateral and axial directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...