Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Langmuir ; 35(25): 8460-8471, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31244216

ABSTRACT

The headgroup (H) stratum (sometimes called the polar region) of membrane bilayers is a relevant yet poorly understood solvation phase for small molecules and macromolecules interacting with the membranes. Solvation of compounds in bilayer strata is characterized experimentally by wide- and small-angle X-ray scattering, neutron diffraction, and various NMR techniques. The quantification is tedious and only available for a limited set of small molecules. Our recently published model of liposome partitioning of small molecules shows that solvation of compounds in the H-stratum of fluid phosphatidylcholine (PC) bilayers correlates well with their solvation in hydrated diacetyl phosphatidylcholine (DAcPC), and solvation in the core (C) depends in a similar way on that in n-hexadecane. These two correlations became a basis for a model describing the location of compounds in the H- and C-strata and at the connecting interface as a nonlinear function of the fragment solvation characteristics of the compounds. In this study, refractivity of hydrated DAcPC phases with varying water contents was measured and polarity was determined using the steady-state fluorescence of indole and Nile Red. The results were compared with the published data obtained by other techniques for PC bilayers in liposomes or on solid supports. The demonstrated qualitative agreement, as well as the polarity and refractivity dependencies on the DAcPC concentration, supports the suitability of hydrated DAcPC as the H-stratum surrogate. Interestingly, depending on hydrations typical for the H-strata of fluid PC bilayers, the dielectric constant could decrease significantly from 31.0 to 7.3 for 16 and 8 water molecules per headgroup, respectively. Although additional experiments are needed for confirmation, this observation could help set proper dielectric constant magnitudes in continuum-based computational models of accumulation and crossing of the PC bilayers with varying hydration levels thanks to the temperature or the structure of fatty acid chains.


Subject(s)
Phosphatidylcholines/chemistry , Alkanes/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Phospholipids/chemistry , Refractometry
2.
Org Process Res Dev ; 21(2): 177-181, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-30792570

ABSTRACT

The acetylated headgroup of the most abundant mammalian phospholipid, 1,2-diacetyl-3-sn-phosphatidyl choline (DAcPC), has several important applications in research. For instance, it can be dissolved in the same amount of water as in the fluid PC bilayer, to create a surrogate of a PC headgroup stratum, for studying solvation of small molecules and the influence of their structure on the process. In contrast to PC derivatives with longer acyl chains, DAcPC does not self-aggregate, rendering the aqueous solution homogeneous and suitable for simplified analyses of interactions of molecules with the headgroups. Several studies have been published where DAcPC was used in a crudely purified form. Here we describe a one-step preparation of DAcPC from commercially available bulk chemicals and purification of the product by crystallization and washing. The process gives a good yield and is easily scalable. The availability of enantiopure, crystalline DAcPC could open the door to more extensive biochemical, pharmacological, and nutritional studies of this interesting chemical.

3.
J Biol Chem ; 291(35): 18326-41, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27281824

ABSTRACT

Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 µm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.


Subject(s)
Histones/chemistry , Homeodomain Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Amino Acid Substitution , Cell Death , DNA Damage , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Methylation , Mutation, Missense , Nuclear Magnetic Resonance, Biomolecular , RING Finger Domains , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Mol Pharm ; 12(4): 1330-4, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25812003

ABSTRACT

We used the solvatochromic correlation to explain the influence of characteristics of studied compounds on the partition coefficients (P) measured using n-hexadecane (C16) and the novel headgroup surrogate (diacetyl phosphatidylcholine, DAcPC), and compared them with those in other systems, including the C16/water (W) system. The comment analyzes why our correlation for the C16/W system has the standard deviation (SD) higher than that published previously. The main reason is that in our, much smaller, data set the measured P values are complemented by the P values predicted by a reliable, unrelated method. We believe that this approach is acceptable for the aforementioned comparison. We did not use just experimental values, as suggested in the comment, because the solvatochromic correlation, although exhibiting 35% reduction in the SD, was accompanied by a sign change of one of the regression coefficients. The recommended use of special solvatochromic solute characteristics for a few compounds and replacement of a predicted PC16/W value by the experimental value resulted in improved correlations. The observed differences between our correlation and those published in the comment and in a previous article do not affect our main conclusions regarding the solvation of solutes in the surrogates (DAcPC and C16) of intrabilayer strata.


Subject(s)
Phosphatidylcholines/chemistry
5.
Mol Pharm ; 11(10): 3577-95, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25179490

ABSTRACT

Solvation of drugs in the core (C) and headgroup (H) strata of phospholipid bilayers affects their physiological transport rates and accumulation. These characteristics, especially a complete drug distribution profile across the bilayer strata, are tedious to obtain experimentally, to the point that even simplified preferred locations are only available for a few dozen compounds. Recently, we showed that the partition coefficient (P) values in the system of hydrated diacetyl phosphatidylcholine (DAcPC) and n-hexadecane (C16), as surrogates of the H- and C-strata of the bilayer composed of the most abundant mammalian phospholipid, PC, agree well with the preferred bilayer location of compounds. High P values are typical for lipophiles accumulating in the core, and low P values are characteristic of cephalophiles preferring the headgroups. This simple pattern does not hold for most compounds, which usually have more even distribution and may also accumulate at the H/C interface. To model complete distribution, the correlates of solvation energies are needed for each drug state in the bilayer: (1) for the H-stratum it is the DAcPC/W P value, calculated as the ratio of the C16/W and C16/DAcPC (W for water) P values; (2) for the C-stratum, the C16/W P value; (3) for the H/C interface, the P values for all plausible molecular poses are characterized using the fragment DAcPC/W and C16/W solvation parameters for the parts of the molecule embedded in the H- and C-strata, respectively. The correlates, each scaled by two Collander coefficients, were used in a nonlinear, mass-balance based model of intrabilayer distribution, which was applied to the easily measurable overall P values of compounds in the DMPC (M = myristoyl) bilayers and monolayers as the dependent variables. The calibrated model for 107 neutral compounds explains 94% of experimental variance, achieves similar cross-validation levels, and agrees well with the nontrivial, experimentally determined bilayer locations for 27 compounds. The resulting structure-based prediction system for intrabilayer distribution will facilitate more realistic modeling of passive transport and drug interactions with those integral membrane proteins, which have the binding sites located in the bilayer, such as some enzymes, influx and efflux transporters, and receptors. If only overall bilayer accumulation is of interest, the 1-octanol/W P values suffice to model the studied set.


Subject(s)
Lipid Bilayers/chemistry , Phospholipids/chemistry , Alkanes/chemistry , Hydrophobic and Hydrophilic Interactions , Phosphatidylcholines/chemistry
6.
Int J Environ Res Public Health ; 11(5): 5020-48, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24821385

ABSTRACT

Renewed focus on the sorption of hydrophobic organic chemicals (HOCs) onto mineral surfaces and soil components is required due to the increased and wider range of organic pollutants being released into the environment. This mini-review examines the possibility of the contribution and mechanism of HOC sorption onto clay mineral sorbents such as kaolinite, and soil organic matter and the possible role of both in the prevention of environmental contamination by HOCs. Literature data indicates that certain siloxane surfaces can be hydrophobic. Therefore soils can retain HOCs even at low soil organic levels and the extent will depend on the structure of the pollutant and the type and concentration of clay minerals in the sorbent. Clay minerals are wettable by nonpolar solvents and so sorption of HOCs onto them from aqueous and non-aqueous solutions is possible. This is important for two reasons: firstly, the movement and remediation of soil environments will be a function of the concentration and type of clay minerals in the soil. Secondly, low-cost sorbents such as kaolinite and expandable clays can be added to soils or contaminated environments as temporary retention barriers for HOCs. Inorganic cations sorbed onto the kaolinite have a strong influence on the rate and extent of sorption of hydrophobic organic pollutants onto kaolinite. Structural sorbate classes that can be retained by the kaolinite matrix are limited by hydrogen bonding between hydroxyl groups of the octahedral alumosilicate sheet and the tetrahedral sheet with silicon. Soil organic carbon plays a key role in the sorption of HOCs onto soils, but the extent will be strongly affected by the structure of the organic soil matter and the presence of soot. Structural characterisation of soil organic matter in a particular soil should be conducted during a particular contamination event. Contamination by mining extractants and antibiotics will require renewed focus on the use of the QSAR approaches in the context of the sorption of HOCs onto clay minerals from aqueous and non-aqueous solutions.


Subject(s)
Aluminum Silicates/chemistry , Organic Chemicals/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Kaolin/chemistry
7.
J Mol Biol ; 426(8): 1661-76, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24333487

ABSTRACT

The monocytic leukemic zinc finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, as well as chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones and show that it preferentially selects for H2AK5ac, H4K12ac, and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze hydrogen bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together, these data provide insights into how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Histones/chemistry , Nuclear Proteins/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Binding Sites , DNA-Binding Proteins , Histones/metabolism , Humans , Hydrogen Bonding , Lysine/chemistry , Macromolecular Substances/chemistry , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
8.
Mol Pharm ; 10(10): 3684-96, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23964749

ABSTRACT

The knowledge of drug concentrations in bilayer headgroups, core, and at the interface between them is a prerequisite for quantitative modeling of drug interactions with many membrane-bound transporters, metabolizing enzymes and receptors, which have the binding sites located in the bilayer. This knowledge also helps understand the rates of trans-bilayer transport because balanced interactions of drugs with the bilayer strata lead to high rates, while excessive affinities for any stratum cause a slowdown. Experimental determination of bilayer location is so tedious and costly that the data are only available for some fifty compounds. To extrapolate these valuable results to more compounds at a higher throughput, surrogate phases have been used to obtain correlates of the drug affinities for individual strata. We introduced a novel system, consisting of a diacetyl phosphatidylcholine (DAcPC) solution with the water content of the fluid bilayer as the headgroup surrogate and n-hexadecane (C16) representing the core. The C16/DAcPC partition coefficients were measured for 113 selected compounds, containing structural fragments that are frequently occurring in approved drugs. The data were deconvoluted into the ClogP-based fragment solvation characteristics and processed using a solvatochromic correlation. Increased H-bond donor ability and excess molar refractivity of compounds promote solvation in the DAcPC phase as compared to bulk water, contrary to H-bond acceptor ability, dipolarity/polarizability, and volume. The results show that aromates have more balanced distribution in bilayer strata, and thus faster trans-bilayer transport, than similar alkanes. This observation is in accordance with the frequent occurrence of aromatic rings in approved drugs and with the role of rigidity of drug molecules in promoting intestinal absorption. Bilayer locations, predicted using the C16/DAcPC system, are in excellent agreement with available experimental data, in contrast to other surrogate systems.


Subject(s)
Phosphatidylcholines/chemistry , Alkanes/chemistry , Lipid Bilayers/chemistry , Models, Theoretical , Phospholipids/chemistry
9.
J Chem Inf Model ; 53(6): 1424-35, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23641957

ABSTRACT

Surrogate phases have been widely used as correlates for modeling transport and partitioning of drugs in biological systems, taking advantage of chemical similarity between the surrogate and the phospholipid bilayer as the elementary unit of biological phases, which is responsible for most of the transport and partitioning. Solvation in strata of the phospholipid bilayer is an important drug characteristic because it affects the rates of absorption and distribution, as well as the interactions with the membrane proteins having the binding sites located inside the bilayer. The bilayer core can be emulated by n-hexadecane (C16), and the headgroup stratum is often considered a hydrophilic phase because of the high water content. Therefore, we tested the hypothesis that the C16/water partition coefficients (P) can predict the bilayer locations of drugs and other small molecules better than other surrogate systems. Altogether 514 PC16/W values for nonionizable (458) and completely ionized (56) compounds were collected from the literature or measured, when necessary. With the intent to create a fragment-based prediction system, the PC16/W values were factorized into the fragment solvation parameters (f) and correction factors based on the ClogP fragmentation scheme. A script for the PC16/W prediction using the ClogP output is provided. To further expand the prediction system and reveal solvation differences, the fC16/W values were correlated with their more widely available counterparts for the 1-octanol/water system (O/W) using solvatochromic parameters. The analysis for 50 compounds with known bilayer location shows that the available and predicted PC16/W and PO/W values alone or the PC16/O values representing their ratio do not satisfactorily predict the preference for drug accumulation in bilayer strata. These observations indicate that the headgroups stratum, albeit well hydrated, does not have solvation characteristics similar to water and is also poorly described by the O/W partition characteristics.


Subject(s)
Alkanes/chemistry , Pharmaceutical Preparations/chemistry , Water/chemistry , 1-Octanol/chemistry , Hydrophobic and Hydrophilic Interactions , Phospholipids/chemistry
10.
Curr Pharm Des ; 19(23): 4316-22, 2013.
Article in English | MEDLINE | ID: mdl-23170882

ABSTRACT

Speciation of drug candidates and receptors caused by ionization, tautomerism, and/or covalent hydration complicates ligandand receptor-based predictions of binding affinities by 3-dimensional structure-activity relationships (3D-QSAR). The speciation problem is exacerbated by tendency of tautomers to bind in multiple conformations or orientations (modes) in the same binding site. New forms of the 3D-QSAR correlation equations, capable of capturing this complexity, can be developed using the time hierarchy of all steps that lie behind the monitored biological process - binding, enzyme inhibition or receptor activity. In most cases, reversible interconversions of individual ligand and receptor species can be treated as quickly established equilibria because they are finished in a small fraction of the exposure time that is used to determine biological effects. The speciation equilibria are satisfactorily approximated by invariant fractions of individual ligand and receptor species for buffered experimental or in vivo conditions. For such situations, the observed drug-receptor association constant of a ligand is expressed as the sum of products, for each ligand and receptor species pair, of the association microconstant and the fractions of involved species. For multiple binding modes, each microconstant is expressed as the sum of microconstants of individual modes. This master equation leads to new 3D-QSAR correlation equations integrating the results of all molecular simulations or calculations, which are run for each ligand-receptor species pair separately. The multispecies, multimode 3D-QSAR approach is illustrated by a ligand-based correlation of transthyretin binding of thyroxine analogs and by a receptor-based correlation of inhibition of MK2 by benzothiophenes and pyrrolopyrimidines.


Subject(s)
Quantitative Structure-Activity Relationship , Receptors, Cell Surface/chemistry , Binding Sites , Ligands , Stereoisomerism
11.
Drug Discov Today ; 17(19-20): 1079-87, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22705388

ABSTRACT

The existing consensus on coexistence of transbilayer diffusion and carrier-mediated transport as two main mechanisms for drugs crossing biological membranes was recently challenged by a systems biology group. Their transporters-only hypothesis is examined in this article using published experimental evidence. The main focus is on the key claim of their hypothesis, stating that 'the drug molecules cross pure phospholipid bilayers through transient pores that cannot form in the bilayers of cell membranes, and thus transbilayer drug transport does not exist in cells'. The analysis shows that the prior consensus remains a valid scientific view of the membrane transport of drugs.


Subject(s)
Cell Membrane/metabolism , Lipid Bilayers/metabolism , Pharmaceutical Preparations/metabolism , Animals , Biological Transport , Diffusion , Humans
12.
J Med Chem ; 55(8): 3699-712, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22468611

ABSTRACT

We present the cellular quantitative structure-activity relationship (cell-QSAR) concept that adapts ligand-based and receptor-based 3D-QSAR methods for use with cell-level activities. The unknown intracellular drug disposition is accounted for by the disposition function (DF), a model-based, nonlinear function of a drug's lipophilicity, acidity, and other properties. We conceptually combined the DF with our multispecies, multimode version of the frequently used ligand-based comparative molecular field analysis (CoMFA) method, forming a single correlation function for fitting the cell-level activities. The resulting cell-QSAR model was applied to the Selwood data on filaricidal activities of antimycin analogues. Their molecules are flexible, ionize under physiologic conditions, form different intramolecular H-bonds for neutral and ionized species, and cross several membranes to reach unknown receptors. The calibrated cell-QSAR model is significantly more predictive than other models lacking the disposition part and provides valuable structure optimization clues by factorizing the cell-level activity of each compound into the contributions of the receptor binding and disposition.


Subject(s)
Antimycin A/analogs & derivatives , Filaricides/pharmacology , Antimycin A/chemistry , Antimycin A/pharmacokinetics , Antimycin A/pharmacology , Chemical Phenomena , Drug Design , Hydrogen Bonding , Ligands , Models, Molecular , Protein Binding , Quantitative Structure-Activity Relationship
13.
J Med Chem ; 55(5): 2035-47, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22280316

ABSTRACT

Treatment of ionization and tautomerism of ligands and receptors is one of the unresolved issues in structure-based prediction of binding affinities. Our solution utilizes the thermodynamic master equation, expressing the experimentally observed association constant as the sum of products, each valid for a specific ligand-receptor species pair, consisting of the association microconstant and the fractions of the involved ligand and receptor species. The microconstants are characterized by structure-based simulations, which are run for individual species pairs. Here we incorporated the multispecies approach into the QM/MM linear response method and used it for structural correlation of published inhibition data on mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) by 66 benzothiophene and pyrrolopyridine analogues, forming up to five tautomers and seven ionization species under experimental conditions. Extensive cross-validation showed that the resulting models were stable and predictive. Inclusion of all tautomers and ionization ligand species was essential: the explained variance increased to 90% from 66% for the single-species model.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Models, Molecular , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemistry , Pyrroles/chemistry , Quantitative Structure-Activity Relationship , Thiophenes/chemistry , Computer Simulation , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Intracellular Signaling Peptides and Proteins/chemistry , Ions , Isomerism , Ligands , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Quantum Theory , Solutions , Thermodynamics , Water
14.
J Chem Inf Model ; 51(5): 1132-50, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21476521

ABSTRACT

For a rigorous analysis of the receptor-ligand binding, speciation of the ligands caused by ionization, tautomerism, covalent hydration, and dynamic stereoisomerism needs to be considered. Each species may bind in several orientations or conformations (modes), especially for flexible ligands and receptors. A thermodynamic description of the multispecies (MS), multimode (MM) binding events shows that the overall association constant is equal to the weighted sum of the sums of microscopic association constants of individual modes for each species, with the weights given by the unbound fractions of individual species. This expression is a prerequisite for a precise quantitative characterization of the ligand-receptor interactions in both structure-based and ligand-based structure-activity analyses. We have implemented the MS-MM correlation expression into the comparative molecular field analysis (CoMFA), which deduces a map of the binding site from structures and binding affinities of a ligand set, in the absence of experimental structural information on the receptor. The MS-MM CoMFA approach was applied to published data for binding to transthyretin of 28 thyroxine analogs, each forming up to four ionization species under physiological conditions. The published X-ray structures of several analogs, exhibiting multiple binding modes, served as templates for the MS-MM superposition of thyroxine analogs. Additional modes were generated for compounds with flexible alkyl substituents, to identify bound conformations. The results demonstrate that the MS-MM modification improved predictive abilities of the CoMFA models, even for the standard procedure with MS-MM selected species and modes. The predicted prevalences of individual modes and the generated receptor site model are in reasonable agreement with the available X-ray data. The calibrated model can help in the design of inhibitors of transthyretin amyloid fibril formation.


Subject(s)
Amyloid/chemistry , Prealbumin/chemistry , Software , Thyroxine/chemistry , Algorithms , Amyloid/antagonists & inhibitors , Binding Sites , Humans , Kinetics , Ligands , Molecular Conformation , Prealbumin/antagonists & inhibitors , Protein Binding , Quantitative Structure-Activity Relationship , Stereoisomerism , Thermodynamics , Thyroxine/analogs & derivatives
15.
Article in English | MEDLINE | ID: mdl-21337247

ABSTRACT

The mechanism of biphenyl biodegradation by Pseudomonas stutzeri was studied. Growth curves on biphenyl were measured, along with dissolution kinetics of biphenyl and production of biosurfactants by the bacterium. Biphenyl was supplied as pure crystals (the crystal biphenyl), adsorbed to Chromosorb G (the Chromosorb G biphenyl) or XAD-4 particles (the XAD-4 biphenyl). No lag phase was observed on the crystal biphenyl, while this period lasted 3.5-6.0 hours on the Chromosorb G biphenyl. The linear specific growth rates (LSGRs) ranged from 2.00 × 10(-4) to 293 × 10(-4) dry weight grams/L/h (d.w.g/L/h) on these two substrates. The LSGR values were directly proportional to the interfacial area between the solid substrate and the microbial suspension. The XAD-4 biphenyl was not bioavailable to the bacterium. The zero-order rates of dissolution ranged from 2.3 × 10(-5)to 8.0 × 10(-4) g/L/h on the crystal biphenyl and the Chromosorb G biphenyl. No biosurfactant production was observed on any biphenyl substrate. Growth curves, results of dissolution measurements and the scanning electron microscope (SEM) images indicate that Pseudomonas stutzeri takes up biphenyl from the aqueous phase as well as the solid phase of the crystal and the Chromosorb G biphenyl. The mechanism of uptake depends on the initial biphenyl concentration and the particle diameter of the biphenyl substrate.


Subject(s)
Biphenyl Compounds/metabolism , Pseudomonas stutzeri/metabolism , Soil Pollutants/metabolism , Absorption , Biodegradation, Environmental , Biphenyl Compounds/chemistry , Kinetics , Microscopy, Electron, Scanning , Pseudomonas stutzeri/growth & development
17.
Chem Biol Drug Des ; 72(4): 237-48, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18844670

ABSTRACT

Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.


Subject(s)
Enzyme Inhibitors/metabolism , Extracellular Matrix/metabolism , Matrix Metalloproteinases/metabolism , Models, Molecular , Quantitative Structure-Activity Relationship , Binding Sites , Protein Binding , Protein Conformation
18.
Proteins ; 69(2): 326-39, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17607744

ABSTRACT

Design of selective ligands for closely related targets is becoming one of the most important tasks in the drug development. New tools, more precise than fast scoring functions and less demanding than sophisticated Free Energy Perturbation methods, are necessary to help accomplish this goal. The methods of intermediate complexity, characterizing individual contributions to the binding energy, have been an area of intense research in the past few years. Our recently developed quantum mechanical/molecular mechanical (QM/MM) modification of the Linear Response (LR) method describes the binding free energies as the sum of empirically weighted contributions of the QM/MM interaction energies and solvent-accessible surface areas for the time-averaged structures of hydrated complexes, obtained by molecular dynamics (MD) simulations. The method was applied to published data on 27 inhibitors of matrix metalloproteinase-3 (MMP-3). The two descriptors explained 90% of variance in the inhibition constants with RMSE of 0.245 log units. The QM/MM treatment is indispensable for characterization of the systems lacking suitable force-field expressions. In this case, it provided characteristics of H-bonds of the inhibitors to Glu202, charges of binding site atoms, and accurate coordination geometries of the ligands to catalytic zinc. The geometries were constrained during the MD simulations, which characterized conformational flexibility of the complexes and helped in the elucidation of the binding differences for related compounds. A comparison of the presented QM/MM LR results with those previously published for inhibition of MMP-9 by the same set of ligands showed that the QM/MM LR approach was able to distinguish subtle differences in binding affinities for MMP-3 and MMP-9, which did not exceed one order of magnitude. This precision level makes the approach a useful tool for design of selective ligands to similar targets, because the results can be safely extrapolated to maximize selectivity.


Subject(s)
Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/metabolism , Models, Chemical , Quantum Theory , Thermodynamics , Computer Simulation , Hydroxamic Acids/chemistry , Hydroxamic Acids/metabolism , Ligands , Linear Models , Matrix Metalloproteinase 3/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors , Protein Binding
19.
J Comput Aided Mol Des ; 21(1-3): 131-7, 2007.
Article in English | MEDLINE | ID: mdl-17333483

ABSTRACT

Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Aquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.


Subject(s)
Computer Simulation , Ligands , Matrix Metalloproteinase Inhibitors , Models, Chemical , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase 9/metabolism , Protein Binding
20.
J Biomol Screen ; 12(2): 186-202, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17218665

ABSTRACT

Characterization of interactions with phospholipids is an integral part of the in vitro profiling of drug candidates because of the roles the interactions play in tissue accumulation and passive diffusion. Currently used test systems may inadequately emulate the bilayer core solvation properties (immobilized artificial membranes [IAM]), suffer from potentially slow transport of some chemicals (liposomes in free or immobilized forms), and require a tedious separation (if used for free liposomes). Here the authors introduce a well-defined system overcoming these drawbacks: nonporous octadecylsilica particles coated with a self-assembled phospholipid monolayer. The coating mimics the structure of the headgroup region, as well as the thickness and properties of the hydrocarbon core, more closely than IAM. The monolayer has a similar transition temperature pattern as the corresponding bilayer. The particles can be separated by filtration or a mild centrifugation. The partitioning equilibria of 81 tested chemicals were dissected into the headgroup and core contributions, the latter using the alkane/water partition coefficients. The deconvolution allowed a successful prediction of the bilayer/water partition coefficients with the standard deviation of 0.26 log units. The plate-friendly assay is suitable for high-throughput profiling of drug candidates without sacrificing the quality of analysis or details of the drug-phospholipid interactions.


Subject(s)
Membranes, Artificial , Pharmaceutical Preparations/metabolism , Phospholipids/pharmacokinetics , Adsorption , Alkylation , Calorimetry, Differential Scanning , Hydrophobic and Hydrophilic Interactions , Kinetics , Liposomes/chemistry , Magnetic Resonance Spectroscopy , Microspheres , Models, Chemical , Phospholipids/chemistry , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL