Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37233228

ABSTRACT

During a survey of Phytophthora diversity in Panama, fast-growing oomycete isolates were obtained from naturally fallen leaves of an unidentified tree species in a tropical cloud forest. Phylogenetic analyses of sequences from the nuclear ITS, LSU and ßtub loci and the mitochondrial cox1 and cox2 genes revealed that they belong to a new species of a new genus, officially described here as Synchrospora gen. nov., which resided as a basal genus within the Peronosporaceae. The type species S. medusiformis has unique morphological characteristics. The sporangiophores show determinate growth, multifurcating at the end, forming a stunted, candelabra-like apex from which multiple (8 to >100) long, curved pedicels are growing simultaneously in a medusa-like way. The caducous papillate sporangia mature and are shed synchronously. The breeding system is homothallic, hence more inbreeding than outcrossing, with smooth-walled oogonia, plerotic oospores and paragynous antheridia. Optimum and maximum temperatures for growth are 22.5 and 25-27.5 °C, consistent with its natural cloud forest habitat. It is concluded that S. medusiformis as adapted to a lifestyle as a canopy-dwelling leaf pathogen in tropical cloud forests. More oomycete explorations in the canopies of tropical rainforests and cloud forests are needed to elucidate the diversity, host associations and ecological roles of oomycetes and, in particular, S. medusiformis and possibly other Synchrospora taxa in this as yet under-explored habitat.

2.
Phytopathology ; 107(6): 769-776, 2017 06.
Article in English | MEDLINE | ID: mdl-28168927

ABSTRACT

Genetic diversity of two Phytophthora spp.-P. cinnamomi (102 isolates), commonly encountered in Maryland nurseries and forests in the Mid-Atlantic United States, and P. plurivora (186 isolates), a species common in nurseries-was characterized using amplified fragment length polymorphism. Expected heterozygosity and other indices suggested a lower level of diversity among P. cinnamomi than P. plurivora isolates. Hierarchical clustering showed P. cinnamomi isolates separated into four clusters, and two of the largest clusters were closely related, containing 80% of the isolates. In contrast, P. plurivora isolates separated into six clusters, one of which included approximately 40% of the isolates. P. plurivora isolates recovered from the environment (e.g., soil and water) were genotypically more diverse than those found causing lesions. For both species, isolate origin (forest versus nursery or among nurseries) was a significant factor of heterozygosity. Clonal groups existed within P. cinnamomi and P. plurivora and included isolates from both forest and nurseries, suggesting that a pathway from nurseries to forests or vice versa exists.


Subject(s)
Genetic Variation , Phytophthora/genetics , Plant Diseases/parasitology , Trees/parasitology , Amplified Fragment Length Polymorphism Analysis , Environment , Forests , Gardens , Genotype , Maryland , Phytophthora/isolation & purification , Polymorphism, Genetic , Soil Microbiology , Water Microbiology
3.
PLoS One ; 10(3): e0121297, 2015.
Article in English | MEDLINE | ID: mdl-25815838

ABSTRACT

Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.


Subject(s)
Host-Pathogen Interactions , Plant Diseases/microbiology , Trees/microbiology , Xylella/pathogenicity , District of Columbia , Phylogeny , Plant Diseases/genetics , Plant Leaves/growth & development , Plant Leaves/microbiology , Trees/genetics , Xylella/genetics
4.
Mycologia ; 106(3): 431-47, 2014.
Article in English | MEDLINE | ID: mdl-24871599

ABSTRACT

A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and ß-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate.


Subject(s)
Phytophthora/isolation & purification , Plant Diseases/microbiology , Plants/microbiology , Australia , Fruit/microbiology , Molecular Sequence Data , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Phytophthora/growth & development , Spores/growth & development , United States
5.
Plant Dis ; 98(12): 1611-1618, 2014 Dec.
Article in English | MEDLINE | ID: mdl-30703881

ABSTRACT

A survey of urban trees affected by bacterial leaf scorch (BLS) caused by Xylella fastidiosa was conducted in the District of Columbia during 2011 and 2012. Over 20 species of urban trees were evaluated at 95 sites. Symptomatic and asymptomatic foliage from trees with BLS symptoms and foliage from neighboring asymptomatic trees were sampled. An X. fastidiosa-specific enzyme-linked immunosorbent assay (ELISA) and a polymerase chain reaction assay were used to detect and identify the strains from environmental samples. Symptomatic trees testing ELISA-positive for X. fastidiosa occurred most frequently with Quercus palustris, Q. rubra, Ulmus americana, and Platanus occidentalis. The bacterium was also less frequently identified on eight other symptomatic and five asymptomatic tree species. On infected trees, the bacterium was also detected on the asymptomatic portion of seven tree species. All strains were identified as the X. fastidiosa subsp. multiplex genotype ALSII except on Morus alba, where the genotype ALSI and the subsp. sandyi were detected. The occurrence of crown dieback was found significantly associated with X. fastidiosa-infection on Q. palustris, Q. rubra, U. americana, and P. occidentalis. Because this pathogen continues to perpetuate uncontrolled in urban environments, there is a pressing need to identify long-term management strategies that abate disease.

6.
Phytopathology ; 103(12): 1204-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23961810

ABSTRACT

The online community resource Phytophthora database (PD) was developed to support accurate and rapid identification of Phytophthora and to help characterize and catalog the diversity and evolutionary relationships within the genus. Since its release in 2008, the sequence database has grown to cover 1 to 12 loci for ≈2,600 isolates (representing 138 described and provisional species). Sequences of multiple mitochondrial loci were added to complement nuclear loci-based phylogenetic analyses and diagnostic tool development. Key characteristics of most newly described and provisional species have been summarized. Other additions to improve the PD functionality include: (i) geographic information system tools that enable users to visualize the geographic origins of chosen isolates on a global-scale map, (ii) a tool for comparing genetic similarity between isolates via microsatellite markers to support population genetic studies, (iii) a comprehensive review of molecular diagnostics tools and relevant references, (iv) sequence alignments used to develop polymerase chain reaction-based diagnostics tools to support their utilization and new diagnostic tool development, and (v) an online community forum for sharing and preserving experience and knowledge accumulated in the global Phytophthora community. Here we present how these improvements can support users and discuss the PD's future direction.


Subject(s)
Databases, Genetic , Phytophthora/genetics , Computational Biology , DNA, Mitochondrial/genetics , Databases, Genetic/trends , Genotype , Geography , Internet , Microsatellite Repeats/genetics , Phylogeny , Phytophthora/classification , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
7.
Plant Dis ; 96(8): 1080-1103, 2012 Aug.
Article in English | MEDLINE | ID: mdl-30727075

ABSTRACT

With the increased attention given to the genus Phytophthora in the last decade in response to the ecological and economic impact of several invasive species (such as P. ramorum, P. kernoviae, and P. alni), there has been a significant increase in the number of described species. In part, this is due to the extensive surveys in historically underexplored ecosystems (e.g., forest and stream ecosystems) undertaken to determine the spread of invasive species and the involvement of Phytophthora species in forest decline worldwide (e.g., oak decline). The past decade has seen an approximate doubling in the number of described species within the genus Phytophthora, and the number will likely continue to increase as more surveys are completed and greater attention is devoted to clarifying phylogenetic relationships and delineating boundaries in species complexes. The development of molecular resources, the availability of credible sequence databases to simplify identification of new species, and the sequencing of several genomes have provided a solid framework to gain a better understanding of the biology, diversity, and taxonomic relationships within the genus. This information is much needed considering the impact invasive or exotic Phytophthora species have had on natural ecosystems and the regulatory issues associated with their management. While this work is improving our ability to identify species based on phylogenetic grouping, it has also revealed that the genus has a much greater diversity than previously appreciated.

8.
Mycol Res ; 112(Pt 8): 906-16, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18554891

ABSTRACT

Isolates belonging to an undescribed Phytophthora species were frequently recovered during an oak forest soil survey of Phytophthora species in eastern and north-central USA in 2004. The species was isolated using an oak leaf baiting method from rhizosphere soil samples collected from Quercus rubra, Q. macrocarpa, and Q. phellos. This species is formally described as P. quercetorum. It is homothallic and has aplerotic oogonia and paragynous antheridia. It produces papillate sporangia (occasionally bipapillate) of ovoid-elongated shapes. Its temperature optimum for growth is ca 22.5 degrees C with the upper limit of ca 32.5 degrees C. P. quercetorum differs from the morphologically related P. quercina in producing distinct submerged colony-patterns, different growth-temperature requirements, and oogonial shapes and sizes. Phylogenetic analyses using seven nuclear loci supported P. quercetorum as a novel species within clade 4, closely related to P. arecae, P. palmivora, P. megakarya, and P. quercina.


Subject(s)
Phytophthora/isolation & purification , Quercus/microbiology , Soil Microbiology , Trees/microbiology , Ecology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Molecular Sequence Data , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Phytophthora/physiology , Spores, Fungal/chemistry , Spores, Fungal/cytology , United States
9.
Plant Dis ; 92(6): 966-972, 2008 Jun.
Article in English | MEDLINE | ID: mdl-30769728

ABSTRACT

Phytophthora spp. represent a serious threat to agricultural and ecological systems. Many novel Phytophthora spp. have been reported in recent years, which is indicative of our limited understanding of the ecology and diversity of Phytophthora spp. in nature. Systematic cataloging of genotypic and phenotypic information on isolates of previously described species serves as a baseline for identification, classification, and risk assessment of new Phytophthora isolates. The Phytophthora Database (PD) was established to catalog such data in a web-accessible and searchable format. To support the identification of new Phytophthora isolates via comparison of their sequences at one or more loci with the corresponding sequences derived from the isolates archived in the PD, we generated and deposited sequence data from more than 1,500 isolates representing the known diversity in the genus. Data search and analysis tools in the PD include BLAST, Phyloviewer (a program for building phylogenetic trees using sequences of selected isolates), and Virtual Gel (a program for generating expected restriction patterns for given sequences). The PD also provides a customized means of storing and sharing data via the web. The PD serves as a model that easily can be adopted to develop databases for other important pathogen groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...