Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 69: 108267, 2023 12.
Article in English | MEDLINE | ID: mdl-37813174

ABSTRACT

Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.


Subject(s)
Biotechnology , Polysaccharides , Cricetinae , Animals , Glycosylation , CHO Cells , Cricetulus , Recombinant Proteins/genetics
2.
Appl Immunohistochem Mol Morphol ; 31(3): 172-180, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36806188

ABSTRACT

The study was designed to review the demographic, clinical, and pathologic characteristics of follicular helper T cells (TFH)-derived nodal PTCL in India including angioimmunoblastic T-cell lymphoma (AITL), peripheral T-cell lymphoma (PTCL) with follicular helper T cell phenotype (P-TFH), and follicular T-cell lymphoma with additional immunohistochemistry (IHC) and RHOAG17V mutational analysis, as well as their impact on survival. This retrospective study included 88 cases of PTCL that were reclassified using IHC for TFH markers (PD1, ICOS, BCL6, and CD10) and dendritic-meshwork markers (CD21, CD23). Cases of TFH cell origin were evaluated for RHOAG17V mutation using Sanger sequencing and amplification-refractory mutation system-polymerase chain reaction (PCR) (validated using cloning and quantitative PCR) with detailed clinicopathologic correlation. Extensive re-evaluation with added IHC panel resulted in a total of 19 cases being reclassified, and the final subtypes were AITL (37 cases, 42%), PTCL-not otherwise specified (44, 50%), P-TFH (6, 7%), and follicular T-cell lymphoma (1, 1%). The presence of at least 2 TFH markers (>20% immunopositivity) determined the TFH origin. AITL patients tended to be male and showed increased presence of B-symptoms and hepatosplenomegaly. Histomorphology revealed that 92% of AITL cases had pattern 3 involvement. Sanger sequencing with conventional PCR did not yield any mutation, while RHOAG17V was detected by amplification-refractory mutation system-PCR in AITL (51%, P =0.027) and P-TFH (17%), which was validated with cloning followed by sequencing. Cases of RHOAG17V-mutant AITL had a worse Eastern Cooperative Oncology Group performance status initially but fared better in terms of overall outcome ( P =0.029). Although not specific for AITL, RHOAG17V mutation shows an association with diagnosis and requires sensitive methods for detection due to low-tumor burden. The mutant status of AITL could have prognostic implications and translational relevance.


Subject(s)
Immunoblastic Lymphadenopathy , Lymphoma, T-Cell, Peripheral , Male , Humans , T Follicular Helper Cells/pathology , Retrospective Studies , T-Lymphocytes, Helper-Inducer/pathology , Lymphoma, T-Cell, Peripheral/diagnosis , Immunoblastic Lymphadenopathy/genetics , Immunoblastic Lymphadenopathy/pathology , Mutation , rhoA GTP-Binding Protein/genetics
3.
Bioresour Technol ; 369: 128457, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36503094

ABSTRACT

Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.


Subject(s)
Biofuels , Microalgae , Multiomics , Microalgae/metabolism , Metabolic Networks and Pathways , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...