Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Nitric Oxide ; 23(4): 269-74, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20682356

ABSTRACT

AIM: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. METHODS: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-l-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2×10(-5) M) and methyl-ß-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 µM), in the presence and absence of DMB (2×10(-5) M). RESULTS: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+) exchanger (NCX), and partially blunted by the caveolae disassembly. CONCLUSIONS: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation.


Subject(s)
Aorta, Thoracic/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Space/metabolism , Nitric Oxide/metabolism , Sodium Hydroxide/pharmacology , Animals , Aorta, Thoracic/cytology , Aorta, Thoracic/metabolism , Calcium/metabolism , Calmodulin/metabolism , Extracellular Space/drug effects , Hydrogen-Ion Concentration , Male , Nitric Oxide Synthase/metabolism , Phenylephrine/pharmacology , Rats , Rats, Wistar , Sodium-Calcium Exchanger/drug effects , Sodium-Calcium Exchanger/metabolism
2.
Braz J Med Biol Res ; 41(6): 439-45, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18592120

ABSTRACT

Acid-base homeostasis maintains systemic arterial pH within a narrow range. Whereas the normal range of pH for clinical laboratories is 7.35-7.45, in vivo pH is maintained within a much narrower range. In clinical and experimental settings, blood pH can vary in response to respiratory or renal impairment. This altered pH promotes changes in vascular smooth muscle tone with impact on circulation and blood pressure control. Changes in pH can be divided into those occurring in the extracellular space (pHo) and those occurring within the intracellular space (pHi), although, extracellular and intracellular compartments influence each other. Consistent with the multiple events involved in the changes in tone produced by altered pHo, including type of vascular bed, several factors and mechanisms, in addition to hydrogen ion concentration, have been suggested to be involved. The scientific literature has many reports concerning acid-base balance and endothelium function, but these concepts are not clear about acid-base disorders and their relations with the three known mechanisms of endothelium-dependent vascular reactivity: nitric oxide (NO/cGMP-dependent), prostacyclin (PGI2/cAMP-dependent) and hyperpolarization. During the last decades, many studies have been published and have given rise to confronting data on acid-base disorder and endothelial function. Therefore, the main proposal of this review is to provide a critical analysis of the state of art and incentivate researchers to develop more studies about these issues.


Subject(s)
Acid-Base Equilibrium/physiology , Blood Vessels/physiopathology , Endothelium, Vascular/physiopathology , Muscle, Smooth, Vascular/physiopathology , Vasodilation/physiology , Acidosis/metabolism , Acidosis/physiopathology , Alkalosis/metabolism , Alkalosis/physiopathology , Animals , Epoprostenol/physiology , Humans , Hydrogen-Ion Concentration , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/physiology
3.
Braz. j. med. biol. res ; 41(6): 439-445, June 2008.
Article in English | LILACS | ID: lil-485854

ABSTRACT

Acid-base homeostasis maintains systemic arterial pH within a narrow range. Whereas the normal range of pH for clinical laboratories is 7.35-7.45, in vivo pH is maintained within a much narrower range. In clinical and experimental settings, blood pH can vary in response to respiratory or renal impairment. This altered pH promotes changes in vascular smooth muscle tone with impact on circulation and blood pressure control. Changes in pH can be divided into those occurring in the extracellular space (pHo) and those occurring within the intracellular space (pHi), although, extracellular and intracellular compartments influence each other. Consistent with the multiple events involved in the changes in tone produced by altered pHo, including type of vascular bed, several factors and mechanisms, in addition to hydrogen ion concentration, have been suggested to be involved. The scientific literature has many reports concerning acid-base balance and endothelium function, but these concepts are not clear about acid-base disorders and their relations with the three known mechanisms of endothelium-dependent vascular reactivity: nitric oxide (NO/cGMP-dependent), prostacyclin (PGI2/cAMP-dependent) and hyperpolarization. During the last decades, many studies have been published and have given rise to confronting data on acid-base disorder and endothelial function. Therefore, the main proposal of this review is to provide a critical analysis of the state of art and incentivate researchers to develop more studies about these issues.


Subject(s)
Animals , Humans , Acid-Base Equilibrium/physiology , Blood Vessels/physiopathology , Endothelium, Vascular/physiopathology , Muscle, Smooth, Vascular/physiopathology , Vasodilation/physiology , Acidosis/metabolism , Acidosis/physiopathology , Alkalosis/metabolism , Alkalosis/physiopathology , Epoprostenol/physiology , Hydrogen-Ion Concentration , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...