Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
PLoS Genet ; 19(11): e1010777, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38011284

ABSTRACT

Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Valve Diseases , Humans , Mice , Animals , Heart Valve Diseases/genetics , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/metabolism , Gene Expression Profiling , Transcriptome/genetics
2.
J Pathol Inform ; 14: 100328, 2023.
Article in English | MEDLINE | ID: mdl-37693862

ABSTRACT

Pathologists need to compare histopathological images of normal and diseased tissues between different samples, cases, and species. We have designed an interactive system, termed Comparative Pathology Workbench (CPW), which allows direct and dynamic comparison of images at a variety of magnifications, selected regions of interest, as well as the results of image analysis or other data analyses such as scRNA-seq. This allows pathologists to indicate key diagnostic features, with a mechanism to allow discussion threads amongst expert groups of pathologists and other disciplines. The data and associated discussions can be accessed online from anywhere in the world. The Comparative Pathology Workbench (CPW) is a web-browser-based visual analytics platform providing shared access to an interactive "spreadsheet" style presentation of image and associated analysis data. The CPW provides a grid layout of rows and columns so that images that correspond to matching data can be organised in the form of an image-enabled "spreadsheet". An individual workbench can be shared with other users with read-only or full edit access as required. In addition, each workbench element or the whole bench itself has an associated discussion thread to allow collaborative analysis and consensual interpretation of the data. The CPW is a Django-based web-application that hosts the workbench data, manages users, and user-preferences. All image data are hosted by other resource applications such as OMERO or the Digital Slide Archive. Further resources can be added as required. The discussion threads are managed using WordPress and include additional graphical and image data. The CPW has been developed to allow integration of image analysis outputs from systems such as QuPath or ImageJ. All software is open-source and available from a GitHub repository.

3.
J Clin Med ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373578

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory bowel disease with a high prevalence throughout the world. The development of Crohn's-related fibrosis, which leads to strictures in the gastrointestinal tract, presents a particular challenge and is associated with significant morbidity. There are currently no specific anti-fibrotic therapies available, and so treatment is aimed at managing the stricturing complications of fibrosis once it is established. This often requires invasive and repeated endoscopic or surgical intervention. The advent of single-cell sequencing has led to significant advances in our understanding of CD at a cellular level, and this has presented opportunities to develop new therapeutic agents with the aim of preventing or reversing fibrosis. In this paper, we discuss the current understanding of CD fibrosis pathogenesis, summarise current management strategies, and present the promise of single-cell sequencing as a tool for the development of effective anti-fibrotic therapies.

4.
Nat Rev Gastroenterol Hepatol ; 20(9): 597-614, 2023 09.
Article in English | MEDLINE | ID: mdl-37258747

ABSTRACT

The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.


Subject(s)
Gastrointestinal Tract , Organoids , Humans , Forecasting
5.
BMC Med Inform Decis Mak ; 23(1): 36, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36793076

ABSTRACT

BACKGROUND: The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately cellular changes related to disease conditions. To further develop the understanding of specific pathological and histopathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive framework is required to enable integration and analysis in spatial terms. METHODS: We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowledge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions in both a 2D model and 3D models, such as a patient's CT scan where the gut has been segmented. RESULTS: The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly accessible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the user to explore the anatomical space of the gut. All data and software is fully open-source and available online. CONCLUSIONS: Small and large intestines have a natural "gut coordinate" system best represented as a 1D centreline through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the intestines. This permits users to accurately locate samples for data comparison.


Subject(s)
Imaging, Three-Dimensional , Software , Humans , Imaging, Three-Dimensional/methods
6.
Development ; 149(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35831952

ABSTRACT

Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis.


Subject(s)
Wnt Proteins , Wnt Signaling Pathway , Animals , Embryo, Mammalian/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Mice , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics
7.
Dev Biol ; 456(1): 40-46, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31283921

ABSTRACT

We present a detailed analysis of gene expression in the 2-day (HH12) embryonic chick heart. RNA-seq of 13 micro-dissected regions reveals regionalised expression of 15,570 genes. Of these, 132 were studied by in situ hybridisation and a subset (38 genes) was mapped by Optical Projection Tomography or serial sectioning to build a detailed 3-dimensional atlas of expression. We display this with a novel interactive 3-D viewer and as stacks of sections, revealing the boundaries of expression domains and regions of overlap. Analysis of the expression domains also defines some sub-regions distinct from those normally recognised by anatomical criteria at this stage of development, such as a previously undescribed subdivision of the atria into two orthogonal sets of domains (dorsoventral and left-right). We also include a detailed comparison of expression in the chick with the mouse and other species.


Subject(s)
Heart/anatomy & histology , Heart/embryology , Imaging, Three-Dimensional/methods , Anatomy, Artistic/methods , Animals , Atlases as Topic , Chick Embryo , Chickens/genetics , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , In Situ Hybridization/methods
8.
Gigascience ; 7(2)2018 02 01.
Article in English | MEDLINE | ID: mdl-29272399

ABSTRACT

"The Atlas of Mouse Development" by Kaufman is a classic paper atlas that is the de facto standard for the definition of mouse embryo anatomy in the context of standard histological images. We have redigitized the original haematoxylin and eosin-stained tissue sections used for the book at high resolution and transferred the hand-drawn annotations to digital form. We have augmented the annotations with standard ontological assignments (EMAPA anatomy) and made the data freely available via an online viewer (eHistology) and from the University of Edinburgh DataShare archive. The dataset captures and preserves the definitive anatomical knowledge of the original atlas, provides a core image set for deeper community annotation and teaching, and delivers a unique high-quality set of high-resolution histological images through mammalian development for manual and automated analysis.


Subject(s)
Developmental Biology/education , Genes, Developmental , Histocytochemistry/methods , Histology/education , Image Processing, Computer-Assisted/statistics & numerical data , Animals , Atlases as Topic , Data Curation/methods , Developmental Biology/methods , Internet , Mice
9.
Database (Oxford) ; 2017(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28365728

ABSTRACT

A primary objective of the eMouseAtlas Project is to enable 3D spatial mapping of whole embryo gene expression data to capture complex 3D patterns for indexing, visualization, cross-comparison and analysis. For this we have developed a spatio-temporal framework based on 3D models of embryos at different stages of development coupled with an anatomical ontology. Here we introduce a method of defining coordinate axes that correspond to the anatomical or biologically relevant anterior-posterior (A-P), dorsal-ventral (D-V) and left-right (L-R) directions. These enable more sophisticated query and analysis of the data with biologically relevant associations, and provide novel data visualizations that can reveal patterns that are otherwise difficult to detect in the standard 3D coordinate space. These anatomical coordinates are defined using the concept of a 'straight mouse-embryo' within which the anatomical coordinates are Cartesian. The straight embryo model has been mapped via a complex non-linear transform onto the standard embryo model. We explore the utility of this anatomical coordinate system in elucidating the spatial relationship of spatially mapped embryonic ' Fibroblast growth factor ' gene expression patterns, and we discuss the importance of this technology in summarizing complex multimodal mouse embryo image data from gene expression and anatomy studies. Database URL: www.emouseatlas.org.


Subject(s)
Body Patterning/physiology , Databases, Genetic , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/embryology , Gene Expression Regulation, Developmental/physiology , Imaging, Three-Dimensional , Animals , Mice
10.
Dev Biol ; 423(1): 1-11, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28161522

ABSTRACT

The eMouseAtlas resource is an online database of 3D digital models of mouse development, an ontology of mouse embryo anatomy and a gene-expression database with about 30K spatially mapped gene-expression patterns. It is closely linked with the MGI/GXD database at the Jackson Laboratory and holds links to almost all available image-based gene-expression data for the mouse embryo. In this resource article we describe the novel web-based tools we have developed for 3D visualisation of embryo anatomy and gene expression. We show how mapping of gene expression data onto spatial models delivers a framework for capturing gene expression that enhances our understanding of development, and we review the exploratory tools utilised by the EMAGE gene expression database as a means of defining co-expression of in situ hybridisation, immunohistochemistry, and lacZ-omic expression patterns. We report on recent developments of the eHistology atlas and our use of web-services to support embedding of the online 'The Atlas of Mouse Development' in the context of other resources such as the DMDD mouse phenotype database. In addition, we discuss new developments including a cellular-resolution placental atlas, third-party atlas models, clonal analysis data and a new interactive eLearning resource for developmental processes.


Subject(s)
Atlases as Topic , Embryo, Mammalian/metabolism , Embryonic Development , Anatomy, Artistic , Animals , Gene Expression Regulation, Developmental , Internet , Mice
11.
Nat Commun ; 7: 12656, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27557800

ABSTRACT

Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development.


Subject(s)
Heart/embryology , Organizers, Embryonic/metabolism , Animals , Biomarkers/metabolism , Body Patterning , Chickens , Endoderm/embryology , Endoderm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart Atria/embryology , Heart Atria/metabolism , Heart Ventricles/embryology , Heart Ventricles/metabolism , Intestinal Mucosa/metabolism , Intestines/embryology , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Quail , Transcriptome/genetics
12.
J Biomed Semantics ; 7: 35, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27267125

ABSTRACT

BACKGROUND: High throughput imaging is now available to many groups and it is possible to generate a large quantity of high quality images quickly. Managing this data, consistently annotating it, or making it available to the community are all challenges that come with these methods. RESULTS: PhenoImageShare provides an ontology-enabled lightweight image data query, annotation service and a single point of access backed by a Solr server for programmatic access to an integrated image collection enabling improved community access. PhenoImageShare also provides an easy to use online image annotation tool with functionality to draw regions of interest on images and to annotate them with terms from an autosuggest-enabled ontology-lookup widget. The provenance of each image, and annotation, is kept and links to original resources are provided. The semantic and intuitive search interface is species and imaging technology neutral. PhenoImageShare now provides access to annotation for over 100,000 images for 2 species. CONCLUSION: The PhenoImageShare platform provides underlying infrastructure for both programmatic access and user-facing tools for biologists enabling the query and annotation of federated images. PhenoImageShare is accessible online at http://www.phenoimageshare.org .


Subject(s)
Data Mining/methods , Image Processing, Computer-Assisted , Biological Ontologies , Software , User-Computer Interface
13.
Article in English | MEDLINE | ID: mdl-26500249

ABSTRACT

The eMouseAtlas project has undertaken to generate a new resource providing access to high-resolution colour images of the slides used in the renowned textbook 'The Atlas of Mouse Development' by Matthew H. Kaufman. The original histology slides were digitized, and the associated anatomy annotations captured for display in the new resource. These annotations were assigned to objects in the standard reference anatomy ontology, allowing the eHistology resource to be linked to other data resources including the Edinburgh Mouse Atlas Gene-Expression database (EMAGE) an the Mouse Genome Informatics (MGI) gene-expression database (GXD). The provision of the eHistology Atlas resource was assisted greatly by the expertise of the eMouseAtlas project in delivering large image datasets within a web environment, using IIP3D technology. This technology also permits future extensions to the resource through the addition of further layers of data and annotations to the resource. Database URL: www.emouseatlas.org/emap/eHistology/index.php.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Histology , Internet , Animals , Mice
14.
Mamm Genome ; 26(9-10): 431-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26296321

ABSTRACT

A significant proportion of developmental biology data is presented in the form of images at morphologically diverse stages of development. The curation of these datasets presents different challenges to that of sequence/text-based data. Towards this end, the eMouseAtlas project created a digital atlas of mouse embryo development as a means of understanding developmental anatomy and exploring the relationship between genes and development in a spatial context. Using the morphological staging system pioneered by Karl Theiler, the project has generated 3D models of post-implantation mouse development and used them as a spatial framework for the delineation of anatomical components and for archiving in situ gene expression data in the EMAGE database. This has allowed us to develop a unique online resource for mouse developmental biology. We describe here the underlying structure of the resource, as well as some of the tools that have been developed to allow users to mine the curated image data. These tools include our IIP3D/X3DOM viewer that allows 3D visualisation of anatomy and/or gene expression in the context of a web browser, and the eHistology resource that extends this functionality to allow visualisation of high-resolution cellular level images of histology sections. Furthermore, we review some of the informatics aspects of eMouseAtlas to provide a deeper insight into the use of the atlas and gene expression database.


Subject(s)
Computational Biology , Databases, Genetic , Embryonic Development , Animals , Embryo, Mammalian , Gene Expression Regulation, Developmental/genetics , Internet , Mice , Software
15.
Mamm Genome ; 26(9-10): 422-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26208972

ABSTRACT

Mouse anatomy ontologies provide standard nomenclature for describing normal and mutant mouse anatomy, and are essential for the description and integration of data directly related to anatomy such as gene expression patterns. Building on our previous work on anatomical ontologies for the embryonic and adult mouse, we have recently developed a new and substantially revised anatomical ontology covering all life stages of the mouse. Anatomical terms are organized in complex hierarchies enabling multiple relationships between terms. Tissue classification as well as partonomic, developmental, and other types of relationships can be represented. Hierarchies for specific developmental stages can also be derived. The ontology forms the core of the eMouse Atlas Project (EMAP) and is used extensively for annotating and integrating gene expression patterns and other data by the Gene Expression Database (GXD), the eMouse Atlas of Gene Expression (EMAGE) and other database resources. Here we illustrate the evolution of the developmental and adult mouse anatomical ontologies toward one combined system. We report on recent ontology enhancements, describe the current status, and discuss future plans for mouse anatomy ontology development and application in integrating data resources.


Subject(s)
Computational Biology , Organ Specificity/genetics , Software , Animals , Databases, Genetic , Gene Expression Regulation, Developmental , Mice
16.
Development ; 142(14): 2545, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26199410

ABSTRACT

There was an error published in Development 142, 1909-1911. Author Yogmatee Roochun was omitted. The corrected author list appears above. The authors apologise to readers for this mistake.

17.
Dis Model Mech ; 8(8): 903-17, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26035382

ABSTRACT

Wilms' tumours, paediatric kidney cancers, are the archetypal example of tumours caused through the disruption of normal development. The genetically best-defined subgroup of Wilms' tumours is the group caused by biallelic loss of the WT1 tumour suppressor gene. Here, we describe a developmental series of mouse models with conditional loss of Wt1 in different stages of nephron development before and after the mesenchymal-to-epithelial transition (MET). We demonstrate that Wt1 is essential for normal development at all kidney developmental stages under study. Comparison of genome-wide expression data from the mutant mouse models with human tumour material of mutant or wild-type WT1 datasets identified the stage of origin of human WT1-mutant tumours, and emphasizes fundamental differences between the two human tumour groups due to different developmental stages of origin.


Subject(s)
Nephrons/growth & development , Nephrons/metabolism , WT1 Proteins/metabolism , Wilms Tumor/pathology , Animals , Biomarkers/metabolism , Cell Lineage , Gene Expression Regulation, Neoplastic , Genome , Integrases/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , Neoplasm Staging , Nephrons/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Time-Lapse Imaging , WT1 Proteins/genetics , Wilms Tumor/genetics
18.
Development ; 142(11): 1909-11, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26015534

ABSTRACT

The Atlas of Mouse Development by Professor Mathew Kaufman is an essential text for understanding mouse developmental anatomy. This definitive and authoritative atlas is still in production and is essential for any biologist working with the mouse embryo, although the last revision dates back to 1994. Here, we announce the eHistology online resource that provides free access to high-resolution colour images digitized from the original histological sections (www.emouseatlas.org/emap/eHistology/index.php) used by Kaufman for the Atlas. The images are provided with the original annotations and plate numbering of the paper atlas and enable viewing the material to cellular resolution.


Subject(s)
Embryonic Development , Histology , Internet , Animals , Mice
19.
Development ; 142(10): 1893-908, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25968320

ABSTRACT

Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.


Subject(s)
Urogenital System/anatomy & histology , Urogenital System/embryology , Animals , Mice , Models, Animal , Urethra/anatomy & histology , Urethra/embryology , Urinary Bladder/anatomy & histology , Urinary Bladder/embryology , Urinary Tract/anatomy & histology , Urinary Tract/embryology
20.
BMC Bioinformatics ; 16: 90, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25887037

ABSTRACT

BACKGROUND: Spatial frameworks are used to capture organ or whole organism image data in biomedical research. The registration of large biomedical volumetric images is a complex and challenging task, but one that is required for spatially mapped biomedical atlas systems. In most biomedical applications the transforms required are non-rigid and may involve significant deformation relating to variation in pose, natural variation and mutation. Here we develop a new technique to establish such transformations for mapping data that cannot be achieved by existing approaches and that can be used interactively for expert editorial review. RESULTS: This paper presents the Constrained Distance Transform (CDT), a novel method for interactive image registration. The CDT uses radial basis function transforms with distances constrained to geodesics within the domains of the objects being registered. A geodesic distance algorithm is discussed and evaluated. Examples of registration using the CDT are presented. CONCLUSION: The CDT method is shown to be capable of simultaneous registration and foreground segmentation even when very large deformations are required.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Animals , Databases, Factual , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...