Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Pathol Inform ; 14: 100328, 2023.
Article in English | MEDLINE | ID: mdl-37693862

ABSTRACT

Pathologists need to compare histopathological images of normal and diseased tissues between different samples, cases, and species. We have designed an interactive system, termed Comparative Pathology Workbench (CPW), which allows direct and dynamic comparison of images at a variety of magnifications, selected regions of interest, as well as the results of image analysis or other data analyses such as scRNA-seq. This allows pathologists to indicate key diagnostic features, with a mechanism to allow discussion threads amongst expert groups of pathologists and other disciplines. The data and associated discussions can be accessed online from anywhere in the world. The Comparative Pathology Workbench (CPW) is a web-browser-based visual analytics platform providing shared access to an interactive "spreadsheet" style presentation of image and associated analysis data. The CPW provides a grid layout of rows and columns so that images that correspond to matching data can be organised in the form of an image-enabled "spreadsheet". An individual workbench can be shared with other users with read-only or full edit access as required. In addition, each workbench element or the whole bench itself has an associated discussion thread to allow collaborative analysis and consensual interpretation of the data. The CPW is a Django-based web-application that hosts the workbench data, manages users, and user-preferences. All image data are hosted by other resource applications such as OMERO or the Digital Slide Archive. Further resources can be added as required. The discussion threads are managed using WordPress and include additional graphical and image data. The CPW has been developed to allow integration of image analysis outputs from systems such as QuPath or ImageJ. All software is open-source and available from a GitHub repository.

2.
J Clin Med ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373578

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory bowel disease with a high prevalence throughout the world. The development of Crohn's-related fibrosis, which leads to strictures in the gastrointestinal tract, presents a particular challenge and is associated with significant morbidity. There are currently no specific anti-fibrotic therapies available, and so treatment is aimed at managing the stricturing complications of fibrosis once it is established. This often requires invasive and repeated endoscopic or surgical intervention. The advent of single-cell sequencing has led to significant advances in our understanding of CD at a cellular level, and this has presented opportunities to develop new therapeutic agents with the aim of preventing or reversing fibrosis. In this paper, we discuss the current understanding of CD fibrosis pathogenesis, summarise current management strategies, and present the promise of single-cell sequencing as a tool for the development of effective anti-fibrotic therapies.

3.
BMC Med Inform Decis Mak ; 23(1): 36, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36793076

ABSTRACT

BACKGROUND: The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately cellular changes related to disease conditions. To further develop the understanding of specific pathological and histopathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive framework is required to enable integration and analysis in spatial terms. METHODS: We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowledge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions in both a 2D model and 3D models, such as a patient's CT scan where the gut has been segmented. RESULTS: The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly accessible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the user to explore the anatomical space of the gut. All data and software is fully open-source and available online. CONCLUSIONS: Small and large intestines have a natural "gut coordinate" system best represented as a 1D centreline through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the intestines. This permits users to accurately locate samples for data comparison.


Subject(s)
Imaging, Three-Dimensional , Software , Humans , Imaging, Three-Dimensional/methods
4.
Development ; 149(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35831952

ABSTRACT

Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis.


Subject(s)
Wnt Proteins , Wnt Signaling Pathway , Animals , Embryo, Mammalian/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Mice , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics
5.
Dev Biol ; 456(1): 40-46, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31283921

ABSTRACT

We present a detailed analysis of gene expression in the 2-day (HH12) embryonic chick heart. RNA-seq of 13 micro-dissected regions reveals regionalised expression of 15,570 genes. Of these, 132 were studied by in situ hybridisation and a subset (38 genes) was mapped by Optical Projection Tomography or serial sectioning to build a detailed 3-dimensional atlas of expression. We display this with a novel interactive 3-D viewer and as stacks of sections, revealing the boundaries of expression domains and regions of overlap. Analysis of the expression domains also defines some sub-regions distinct from those normally recognised by anatomical criteria at this stage of development, such as a previously undescribed subdivision of the atria into two orthogonal sets of domains (dorsoventral and left-right). We also include a detailed comparison of expression in the chick with the mouse and other species.


Subject(s)
Heart/anatomy & histology , Heart/embryology , Imaging, Three-Dimensional/methods , Anatomy, Artistic/methods , Animals , Atlases as Topic , Chick Embryo , Chickens/genetics , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , In Situ Hybridization/methods
6.
Gigascience ; 7(2)2018 02 01.
Article in English | MEDLINE | ID: mdl-29272399

ABSTRACT

"The Atlas of Mouse Development" by Kaufman is a classic paper atlas that is the de facto standard for the definition of mouse embryo anatomy in the context of standard histological images. We have redigitized the original haematoxylin and eosin-stained tissue sections used for the book at high resolution and transferred the hand-drawn annotations to digital form. We have augmented the annotations with standard ontological assignments (EMAPA anatomy) and made the data freely available via an online viewer (eHistology) and from the University of Edinburgh DataShare archive. The dataset captures and preserves the definitive anatomical knowledge of the original atlas, provides a core image set for deeper community annotation and teaching, and delivers a unique high-quality set of high-resolution histological images through mammalian development for manual and automated analysis.


Subject(s)
Developmental Biology/education , Genes, Developmental , Histocytochemistry/methods , Histology/education , Image Processing, Computer-Assisted/statistics & numerical data , Animals , Atlases as Topic , Data Curation/methods , Developmental Biology/methods , Internet , Mice
7.
Dev Biol ; 423(1): 1-11, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28161522

ABSTRACT

The eMouseAtlas resource is an online database of 3D digital models of mouse development, an ontology of mouse embryo anatomy and a gene-expression database with about 30K spatially mapped gene-expression patterns. It is closely linked with the MGI/GXD database at the Jackson Laboratory and holds links to almost all available image-based gene-expression data for the mouse embryo. In this resource article we describe the novel web-based tools we have developed for 3D visualisation of embryo anatomy and gene expression. We show how mapping of gene expression data onto spatial models delivers a framework for capturing gene expression that enhances our understanding of development, and we review the exploratory tools utilised by the EMAGE gene expression database as a means of defining co-expression of in situ hybridisation, immunohistochemistry, and lacZ-omic expression patterns. We report on recent developments of the eHistology atlas and our use of web-services to support embedding of the online 'The Atlas of Mouse Development' in the context of other resources such as the DMDD mouse phenotype database. In addition, we discuss new developments including a cellular-resolution placental atlas, third-party atlas models, clonal analysis data and a new interactive eLearning resource for developmental processes.


Subject(s)
Atlases as Topic , Embryo, Mammalian/metabolism , Embryonic Development , Anatomy, Artistic , Animals , Gene Expression Regulation, Developmental , Internet , Mice
8.
Nat Commun ; 7: 12656, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27557800

ABSTRACT

Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development.


Subject(s)
Heart/embryology , Organizers, Embryonic/metabolism , Animals , Biomarkers/metabolism , Body Patterning , Chickens , Endoderm/embryology , Endoderm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart Atria/embryology , Heart Atria/metabolism , Heart Ventricles/embryology , Heart Ventricles/metabolism , Intestinal Mucosa/metabolism , Intestines/embryology , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Quail , Transcriptome/genetics
9.
Article in English | MEDLINE | ID: mdl-26500249

ABSTRACT

The eMouseAtlas project has undertaken to generate a new resource providing access to high-resolution colour images of the slides used in the renowned textbook 'The Atlas of Mouse Development' by Matthew H. Kaufman. The original histology slides were digitized, and the associated anatomy annotations captured for display in the new resource. These annotations were assigned to objects in the standard reference anatomy ontology, allowing the eHistology resource to be linked to other data resources including the Edinburgh Mouse Atlas Gene-Expression database (EMAGE) an the Mouse Genome Informatics (MGI) gene-expression database (GXD). The provision of the eHistology Atlas resource was assisted greatly by the expertise of the eMouseAtlas project in delivering large image datasets within a web environment, using IIP3D technology. This technology also permits future extensions to the resource through the addition of further layers of data and annotations to the resource. Database URL: www.emouseatlas.org/emap/eHistology/index.php.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Histology , Internet , Animals , Mice
10.
Mamm Genome ; 26(9-10): 431-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26296321

ABSTRACT

A significant proportion of developmental biology data is presented in the form of images at morphologically diverse stages of development. The curation of these datasets presents different challenges to that of sequence/text-based data. Towards this end, the eMouseAtlas project created a digital atlas of mouse embryo development as a means of understanding developmental anatomy and exploring the relationship between genes and development in a spatial context. Using the morphological staging system pioneered by Karl Theiler, the project has generated 3D models of post-implantation mouse development and used them as a spatial framework for the delineation of anatomical components and for archiving in situ gene expression data in the EMAGE database. This has allowed us to develop a unique online resource for mouse developmental biology. We describe here the underlying structure of the resource, as well as some of the tools that have been developed to allow users to mine the curated image data. These tools include our IIP3D/X3DOM viewer that allows 3D visualisation of anatomy and/or gene expression in the context of a web browser, and the eHistology resource that extends this functionality to allow visualisation of high-resolution cellular level images of histology sections. Furthermore, we review some of the informatics aspects of eMouseAtlas to provide a deeper insight into the use of the atlas and gene expression database.


Subject(s)
Computational Biology , Databases, Genetic , Embryonic Development , Animals , Embryo, Mammalian , Gene Expression Regulation, Developmental/genetics , Internet , Mice , Software
11.
Mamm Genome ; 26(9-10): 422-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26208972

ABSTRACT

Mouse anatomy ontologies provide standard nomenclature for describing normal and mutant mouse anatomy, and are essential for the description and integration of data directly related to anatomy such as gene expression patterns. Building on our previous work on anatomical ontologies for the embryonic and adult mouse, we have recently developed a new and substantially revised anatomical ontology covering all life stages of the mouse. Anatomical terms are organized in complex hierarchies enabling multiple relationships between terms. Tissue classification as well as partonomic, developmental, and other types of relationships can be represented. Hierarchies for specific developmental stages can also be derived. The ontology forms the core of the eMouse Atlas Project (EMAP) and is used extensively for annotating and integrating gene expression patterns and other data by the Gene Expression Database (GXD), the eMouse Atlas of Gene Expression (EMAGE) and other database resources. Here we illustrate the evolution of the developmental and adult mouse anatomical ontologies toward one combined system. We report on recent ontology enhancements, describe the current status, and discuss future plans for mouse anatomy ontology development and application in integrating data resources.


Subject(s)
Computational Biology , Organ Specificity/genetics , Software , Animals , Databases, Genetic , Gene Expression Regulation, Developmental , Mice
12.
Development ; 142(10): 1893-908, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25968320

ABSTRACT

Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.


Subject(s)
Urogenital System/anatomy & histology , Urogenital System/embryology , Animals , Mice , Models, Animal , Urethra/anatomy & histology , Urethra/embryology , Urinary Bladder/anatomy & histology , Urinary Bladder/embryology , Urinary Tract/anatomy & histology , Urinary Tract/embryology
13.
BMC Bioinformatics ; 16: 90, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25887037

ABSTRACT

BACKGROUND: Spatial frameworks are used to capture organ or whole organism image data in biomedical research. The registration of large biomedical volumetric images is a complex and challenging task, but one that is required for spatially mapped biomedical atlas systems. In most biomedical applications the transforms required are non-rigid and may involve significant deformation relating to variation in pose, natural variation and mutation. Here we develop a new technique to establish such transformations for mapping data that cannot be achieved by existing approaches and that can be used interactively for expert editorial review. RESULTS: This paper presents the Constrained Distance Transform (CDT), a novel method for interactive image registration. The CDT uses radial basis function transforms with distances constrained to geodesics within the domains of the objects being registered. A geodesic distance algorithm is discussed and evaluated. Examples of registration using the CDT are presented. CONCLUSION: The CDT method is shown to be capable of simultaneous registration and foreground segmentation even when very large deformations are required.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Animals , Databases, Factual , Mice
14.
Front Physiol ; 6: 24, 2015.
Article in English | MEDLINE | ID: mdl-25759670

ABSTRACT

A key challenge for the physiology modeling community is to enable the searching, objective comparison and, ultimately, re-use of models and associated data that are interoperable in terms of their physiological meaning. In this work, we outline the development of a workflow to modularize the simulation of tissue-level processes in physiology. In particular, we show how, via this approach, we can systematically extract, parcellate and annotate tissue histology data to represent component units of tissue function. These functional units are semantically interoperable, in terms of their physiological meaning. In particular, they are interoperable with respect to [i] each other and with respect to [ii] a circuitboard representation of long-range advective routes of fluid flow over which to model long-range molecular exchange between these units. We exemplify this approach through the combination of models for physiology-based pharmacokinetics and pharmacodynamics to quantitatively depict biological mechanisms across multiple scales. Links to the data, models and software components that constitute this workflow are found at http://open-physiology.org/.

15.
Front Neuroinform ; 8: 74, 2014.
Article in English | MEDLINE | ID: mdl-25309417

ABSTRACT

Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.

16.
Methods Mol Biol ; 1092: 61-79, 2014.
Article in English | MEDLINE | ID: mdl-24318814

ABSTRACT

The EMAGE (Electronic Mouse Atlas of Gene Expression) database (http://www.emouseatlas.org/emage) allows users to perform on-line queries of mouse developmental gene expression. EMAGE data are represented spatially using a framework of 3D mouse embryo models, thus allowing uniquely spatial queries to be carried out alongside more traditional text-based queries. This spatial representation of the data also allows a comparison of spatial similarity between the expression patterns. The data are mapped to the models by a team of curators using bespoke mapping software, and the associated meta-data are curated for accuracy and completeness. The data contained in EMAGE are gathered from three main sources: from the published literature, through large-scale screens and collaborations, and via direct submissions from researchers. There are a variety of ways to query the EMAGE database via the on-line search interfaces, as well as via direct computational script-based queries. EMAGE is a free, on-line, community resource funded by the Medical Research Council, UK.


Subject(s)
Embryo, Mammalian , Gene Expression Regulation, Developmental , Software , Animals , Databases, Genetic , Internet , Mice
17.
Nucleic Acids Res ; 42(Database issue): D835-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24265223

ABSTRACT

EMAGE (http://www.emouseatlas.org/emage/) is a freely available database of in situ gene expression patterns that allows users to perform online queries of mouse developmental gene expression. EMAGE is unique in providing both text-based descriptions of gene expression plus spatial maps of gene expression patterns. This mapping allows spatial queries to be accomplished alongside more traditional text-based queries. Here, we describe our recent progress in spatial mapping and data integration. EMAGE has developed a method of spatially mapping 3D embryo images captured using optical projection tomography, and through the use of an IIP3D viewer allows users to view arbitrary sections of raw and mapped 3D image data in the context of a web browser. EMAGE now includes enhancer data, and we have spatially mapped images from a comprehensive screen of transgenic reporter mice that detail the expression of mouse non-coding genomic DNA fragments with enhancer activity. We have integrated the eMouseAtlas anatomical atlas and the EMAGE database so that a user of the atlas can query the EMAGE database easily. In addition, we have extended the atlas framework to enable EMAGE to spatially cross-index EMBRYS whole mount in situ hybridization data. We additionally report on recent developments to the EMAGE web interface, including new query and analysis capabilities.


Subject(s)
Databases, Genetic , Embryo, Mammalian/metabolism , Gene Expression , Mice/genetics , Animals , Computer Graphics , Imaging, Three-Dimensional , Internet , Mice/embryology , Mice/metabolism , Models, Animal , Tomography/methods
18.
J Biomed Semantics ; 4(1): 15, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23972281

ABSTRACT

BACKGROUND: The Edinburgh Mouse Atlas Project (EMAP) ontology of mouse developmental anatomy provides a standard nomenclature for describing normal and mutant mouse embryo anatomy. The ontology forms the core of the EMAP atlas and is used for annotating gene expression data by the mouse Gene Expression Database (GXD), Edinburgh Mouse Atlas of Gene Expression (EMAGE) and other database resources. FINDINGS: The original EMAP ontology listed anatomical entities for each developmental stage separately, presented as uniparental graphs organized as a strict partonomy. An "abstract" (i.e. non-stage-specific) representation of mouse developmental anatomy has since been developed. In this version (EMAPA) all instances for a given anatomical entity are presented as a single term, together with the first and last stage at which it is considered to be present. Timed-component anatomies are now derived using staging information in the "primary" non-timed version. Anatomical entities are presented as a directed acyclic graph enabling multiple parental relationships. Subsumption classification as well as partonomic and other types of relationships can now be represented. Most concept names are unique, with compound names constructed using standardized nomenclature conventions, and alternative names associated as synonyms. CONCLUSIONS: The ontology has been extended and refined in a collaborative effort between EMAP and GXD, with additional input from others. Efforts are also underway to improve the revision process with regards to updating and editorial control. The revised EMAPA ontology is freely available from the OBO Foundry resource, with descriptive information and other documentation presented in associated Wiki pages (http://www.obofoundry.org/wiki/index.php/EMAPA:Main_Page).

19.
Genesis ; 51(5): 365-71, 2013 May.
Article in English | MEDLINE | ID: mdl-23355415

ABSTRACT

The precise control of gene expression is critical in embryonic development. Quantitative assays, such as microarrays and RNA sequencing, provide gene expression levels for a large number of genes, but do not contain spatial information. In contrast, in situ methods, such as in situ hybridization and immunohistochemistry, provide spatial resolution, but poor quantification and can only reveal the expression of one, or very few genes at a time. Furthermore, the usual methods of documenting the results, by photographing whole mounts or sections, makes it very difficult to assess the three-dimensional (3D) relationships between expressing and nonexpressing cells. Optical projection tomography (OPT) can capture the full 3D expression pattern in a whole embryo at a reasonable level of resolution and at moderately high throughput. A large database containing spatio-temporal patterns of expression for the mouse (e-Mouse Atlas Project, EMAP, www.emouseatlas.org) has been created, incorporating 3D information. Like the mouse, the chick is an important model in developmental biology and translational studies. To facilitate comparisons between these important model organisms, we have created a 3D anatomical atlas, accompanied by an anatomical ontology of the chick embryo and a database of gene expression patterns during chick development. This database is publicly available (www.echickatlas.org).


Subject(s)
Chickens/genetics , Databases, Genetic , Gene Expression Regulation , Genomics/methods , Animals , Chick Embryo , Computational Biology/methods , Internet , Software
20.
BMC Bioinformatics ; 13: 122, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22676296

ABSTRACT

BACKGROUND: Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. RESULTS: The standard Internet Imaging Protocol (IIP) has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. CONCLUSIONS: Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume.


Subject(s)
Imaging, Three-Dimensional/methods , Software , Computer Systems , Computers , Data Compression , Humans , Internet , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...