Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Biol Insights ; 18: 11779322241257991, 2024.
Article in English | MEDLINE | ID: mdl-38860163

ABSTRACT

Nucleotide base composition plays an influential role in the molecular mechanisms involved in gene function, phenotype, and amino acid composition. GC content (proportion of guanine and cytosine in DNA sequences) shows a high level of variation within and among species. Many studies measure GC content in a small number of genes, which may not be representative of genome-wide GC variation. One challenge when assembling extensive genomic data sets for these studies is the significant amount of resources (monetary and computational) associated with data processing, and many bioinformatic tools have not been optimized for resource efficiency. Using a high-performance computing (HPC) cluster, we manipulated resources provided to the targeted gene assembly program, automated target restricted assembly method (aTRAM), to determine an optimum way to run the program to maximize resource use. Using our optimum assembly approach, we assembled and measured GC content of all of the protein-coding genes of a diverse group of parasitic feather lice. Of the 499 426 genes assembled across 57 species, feather lice were GC-poor (mean GC = 42.96%) with a significant amount of variation within and between species (GC range = 19.57%-73.33%). We found a significant correlation between GC content and standard deviation per taxon for overall GC and GC3, which could indicate selection for G and C nucleotides in some species. Phylogenetic signal of GC content was detected in both GC and GC3. This research provides a large-scale investigation of GC content in parasitic lice laying the foundation for understanding the basis of variation in base composition across species.

2.
G3 (Bethesda) ; 11(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33604673

ABSTRACT

The pigeon louse Columbicola columbae is a longstanding and important model for studies of ectoparasitism and host-parasite coevolution. However, a deeper understanding of its evolution and capacity for rapid adaptation is limited by a lack of genomic resources. Here, we present a high-quality draft assembly of the C. columbae genome, produced using a combination of Oxford Nanopore, Illumina, and Hi-C technologies. The final assembly is 208 Mb in length, with 12 chromosome-size scaffolds representing 98.1% of the assembly. For gene model prediction, we used a novel clustering method (wavy_choose) for Oxford Nanopore RNA-seq reads to feed into the MAKER annotation pipeline. High recovery of conserved single-copy orthologs (BUSCOs) suggests that our assembly and annotation are both highly complete and highly accurate. Consistent with the results of the only other assembled louse genome, Pediculus humanus, we find that C. columbae has a relatively low density of repetitive elements, the majority of which are DNA transposons. Also similar to P. humanus, we find a reduced number of genes encoding opsins, G protein-coupled receptors, odorant receptors, insulin signaling pathway components, and detoxification proteins in the C. columbae genome, relative to other insects. We propose that such losses might characterize the genomes of obligate, permanent ectoparasites with predictable habitats, limited foraging complexity, and simple dietary regimes. The sequencing and analysis for this genome were relatively low cost, and took advantage of a new clustering technique for Oxford Nanopore RNAseq reads that will be useful to future genome projects.


Subject(s)
Parasites , Phthiraptera , Animals , Columbidae , Genomics , Sequence Analysis, DNA
3.
Genome Biol Evol ; 12(7): 1194-1206, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32539143

ABSTRACT

Vernal pools are unique in their isolation and the strong selection acting on their resident species. Vernal pool clam shrimp (Eulimnadia texana) are a promising model due to ease of culturing, short generation time, small genomes, and obligate desiccated diapaused eggs. Clam shrimp are also androdioecious (sexes include males and hermaphrodites), and here we use population-scaled recombination rates to support the hypothesis that the heterogametic sex is recombination free in these shrimp. We collected short-read sequence data from pooled samples from different vernal pools to gain insights into local adaptation. We identify genomic regions in which some populations have allele frequencies that differ significantly from the metapopulation. BayPass (Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555-1579.) detected 19 such genomic regions showing an excess of population subdivision. These regions on average are 550 bp in size and had 2.5 genes within 5 kb of them. Genes located near these regions are involved in Malpighian tubule function and osmoregulation, an essential function in vernal pools. It is likely that salinity profiles vary between pools and over time, and variants at these genes are adapted to local salinity conditions.


Subject(s)
Adaptation, Biological/genetics , Crustacea/genetics , Genome , Animals , Biological Evolution , Ecosystem , Gene Flow , Hermaphroditic Organisms/genetics , Male , New Mexico , Recombination, Genetic , Selection, Genetic , Sex Determination Processes
4.
Sci Rep ; 9(1): 16595, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719551

ABSTRACT

Using two advanced sequencing approaches, Illumina and PacBio, we derive the entire Dscam gene from an M2 assembly of the complete Penaeus monodon genome. The P. monodon Dscam (PmDscam) gene is ~266 kbp, with a total of 44 exons, 5 of which are subject to alternative splicing. PmDscam has a conserved architectural structure consisting of an extracellular region with hypervariable Ig domains, a transmembrane domain, and a cytoplasmic tail. We show that, contrary to a previous report, there are in fact 26, 81 and 26 alternative exons in N-terminal Ig2, N-terminal Ig3 and the entirety of Ig7, respectively. We also identified two alternatively spliced exons in the cytoplasmic tail, with transmembrane domains in exon variants 32.1 and 32.2, and stop codons in exon variants 44.1 and 44.2. This means that alternative splicing is involved in the selection of the stop codon. There are also 7 non-constitutive cytoplasmic tail exons that can either be included or skipped. Alternative splicing and the non-constitutive exons together produce more than 21 million isoform combinations from one PmDscam locus in the P. monodon gene. A public-facing database that allows BLAST searches of all 175 exons in the PmDscam gene has been established at http://pmdscam.dbbs.ncku.edu.tw/ .


Subject(s)
Alternative Splicing , Arthropod Proteins/genetics , Exons , Penaeidae/genetics , Amino Acid Sequence , Animals , Hemocytes/metabolism , Nerve Tissue/metabolism , Phylogeny , Sequence Homology , Whole Genome Sequencing
5.
Sci Rep ; 9(1): 17618, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772306

ABSTRACT

The cricetine rodents Peromyscus leucopus and P. maniculatus are key reservoirs for several zoonotic diseases in North America. We determined the complete circular mitochondrial genome sequences of representatives of 3 different stock colonies of P. leucopus, one stock colony of P. maniculatus and two wild populations of P. leucopus. The genomes were syntenic with that of the murids Mus musculus and Rattus norvegicus. Phylogenetic analysis confirmed that these two Peromyscus species are sister taxa in a clade with P. polionotus and also uncovered a distinction between P. leucopus populations in the eastern and the central United States. In one P. leucopus lineage four extended regions of mitochondrial pseudogenes were identified in the nuclear genome. RNA-seq analysis revealed transcription of the entire genome and differences from controls in the expression profiles of mitochondrial genes in the blood, but not in liver or brain, of animals infected with the zoonotic pathogen Borrelia hermsii. PCR and sequencing of the D-loop of the mitochondrion identified 32 different haplotypes among 118 wild P. leucopus at a Connecticut field site. These findings help to further establish P. leucopus as a model organism for studies of emerging infectious diseases, ecology, and in other disciplines.


Subject(s)
DNA, Mitochondrial/genetics , Disease Reservoirs , Genome , Peromyscus/genetics , Animals , Animals, Laboratory/genetics , Animals, Wild/genetics , Arachnid Vectors/microbiology , Borrelia , Borrelia Infections/genetics , Borrelia Infections/microbiology , Borrelia burgdorferi/isolation & purification , Female , Gene Expression Profiling , Haplotypes , Ixodes/microbiology , Lyme Disease/microbiology , Lyme Disease/transmission , Lyme Disease/veterinary , Muridae/classification , Muridae/genetics , Organ Specificity , Peromyscus/classification , Peromyscus/microbiology , Phylogeny , Pseudogenes , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Sequence Homology, Nucleic Acid , Species Specificity , Tick Bites/microbiology , Tick Bites/veterinary , United States
6.
Sci Adv ; 5(7): eaaw6441, 2019 07.
Article in English | MEDLINE | ID: mdl-31355335

ABSTRACT

The rodent Peromyscus leucopus is the natural reservoir of several tick-borne infections, including Lyme disease. To expand the knowledge base for this key species in life cycles of several pathogens, we assembled and scaffolded the P. leucopus genome. The resulting assembly was 2.45 Gb in total length, with 24 chromosome-length scaffolds harboring 97% of predicted genes. RNA sequencing following infection of P. leucopus with Borreliella burgdorferi, a Lyme disease agent, shows that, unlike blood, the skin is actively responding to the infection after several weeks. P. leucopus has a high level of segregating nucleotide variation, suggesting that natural resistance alleles to Crispr gene targeting constructs are likely segregating in wild populations. The reference genome will allow for experiments aimed at elucidating the mechanisms by which this widely distributed rodent serves as natural reservoir for several infectious diseases of public health importance, potentially enabling intervention strategies.


Subject(s)
Lyme Disease/genetics , Peromyscus/genetics , Spirochaetales/genetics , Tick-Borne Diseases/genetics , Animals , Genome/genetics , Humans , Molecular Sequence Annotation , Peromyscus/microbiology , Sequence Analysis, RNA , Tick-Borne Diseases/microbiology , Whole Genome Sequencing
7.
Genome Biol Evol ; 10(1): 143-156, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29294012

ABSTRACT

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to their ease of lab culture, short generation time, modest sized genome, a somewhat rare stable androdioecious sex determination system, and a requirement to reproduce via desiccated diapaused eggs. We generated a highly contiguous genome assembly using 46× of PacBio long read data and 216× of Illumina short reads, and annotated using Illumina RNAseq obtained from adult males or hermaphrodites. Of the 120 Mb genome 85% is contained in the largest eight contigs, the smallest of which is 4.6 Mb. The assembly contains 98% of transcripts predicted via RNAseq. This assembly is qualitatively different from scaffolded Illumina assemblies: It is produced from long reads that contain sequence data along their entire length, and is thus gap free. The contiguity of the assembly allows us to order the HOX genes within the genome, identifying two loci that contain HOX gene orthologs, and which approximately maintain the order observed in other arthropods. We identified a partial duplication of the Antennapedia complex adjacent to the few genes homologous to the Bithorax locus. Because the sex chromosome of an androdioecious species is of special interest, we used existing allozyme and microsatellite markers to identify the E. texana sex chromosome, and find that it comprises nearly half of the genome of this species. Linkage patterns indicate that recombination is extremely rare and perhaps absent in hermaphrodites, and as a result the location of the sex determining locus will be difficult to refine using recombination mapping.


Subject(s)
Arthropod Proteins/genetics , Crustacea/genetics , Genomics , Homeodomain Proteins/genetics , Animals , Female , Gene Order , Genes, Homeobox , Genetic Linkage , Genome , Genomics/methods , Male , Microsatellite Repeats , Sex Chromosomes
8.
Nucleic Acids Res ; 44(19): e147, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27458204

ABSTRACT

Genome assemblies that are accurate, complete and contiguous are essential for identifying important structural and functional elements of genomes and for identifying genetic variation. Nevertheless, most recent genome assemblies remain incomplete and fragmented. While long molecule sequencing promises to deliver more complete genome assemblies with fewer gaps, concerns about error rates, low yields, stringent DNA requirements and uncertainty about best practices may discourage many investigators from adopting this technology. Here, in conjunction with the platinum standard Drosophila melanogaster reference genome, we analyze recently published long molecule sequencing data to identify what governs completeness and contiguity of genome assemblies. We also present a hybrid meta-assembly approach that achieves remarkable assembly contiguity for both Drosophila and human assemblies with only modest long molecule sequencing coverage. Our results motivate a set of preliminary best practices for obtaining accurate and contiguous assemblies, a 'missing manual' that guides key decisions in building high quality de novo genome assemblies, from DNA isolation to polishing the assembly.


Subject(s)
Genome , Genomics/methods , Animals , Cell Line , Computational Biology/methods , Drosophila melanogaster/genetics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
9.
Mol Biol Evol ; 31(4): 1040-55, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24441104

ABSTRACT

A novel approach for dissecting complex traits is to experimentally evolve laboratory populations under a controlled environment shift, resequence the resulting populations, and identify single nucleotide polymorphisms (SNPs) and/or genomic regions highly diverged in allele frequency. To better understand the power and localization ability of such an evolve and resequence (E&R) approach, we carried out forward-in-time population genetics simulations of 1 Mb genomic regions under a large combination of experimental conditions, then attempted to detect significantly diverged SNPs. Our analysis indicates that the ability to detect differentiation between populations is primarily affected by selection coefficient, population size, number of replicate populations, and number of founding haplotypes. We estimate that E&R studies can detect and localize causative sites with 80% success or greater when the number of founder haplotypes is over 500, experimental populations are replicated at least 25-fold, population size is at least 1,000 diploid individuals, and the selection coefficient on the locus of interest is at least 0.1. More achievable experimental designs (less replicated, fewer founder haplotypes, smaller effective population size, and smaller selection coefficients) can have power of greater than 50% to identify a handful of SNPs of which one is likely causative. Similarly, in cases where s ≥ 0.2, less demanding experimental designs can yield high power.


Subject(s)
Models, Genetic , Quantitative Trait Loci , Animals , Computer Simulation , Diploidy , Drosophila melanogaster/genetics , Evolution, Molecular , Gene Frequency , Genes, Insect , Genetic Drift , Genetic Markers , Lod Score , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...