Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Space Weather ; 14(1): 22-31, 2016 01.
Article in English | MEDLINE | ID: mdl-27642268

ABSTRACT

Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field Bz observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast.

2.
J Geophys Res Space Phys ; 119(10): 8073-8086, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26167432

ABSTRACT

This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

3.
Science ; 336(6081): 567-70, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22491094

ABSTRACT

Observations with the Venus Express magnetometer and low-energy particle detector revealed magnetic field and plasma behavior in the near-Venus wake that is symptomatic of magnetic reconnection, a process that occurs in Earth's magnetotail but is not expected in the magnetotail of a nonmagnetized planet such as Venus. On 15 May 2006, the plasma flow in this region was toward the planet, and the magnetic field component transverse to the flow was reversed. Magnetic reconnection is a plasma process that changes the topology of the magnetic field and results in energy exchange between the magnetic field and the plasma. Thus, the energetics of the Venus magnetotail resembles that of the terrestrial tail, where energy is stored and later released from the magnetic field to the plasma.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 2): 026403, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18352129

ABSTRACT

Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

5.
Nature ; 450(7170): 654-6, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046399

ABSTRACT

Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 2): 037103, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16241616

ABSTRACT

Avalanching systems are treated analytically using the renormalization group (in the self-organized-criticality regime) or mean-field approximation, respectively. The latter describes the state in terms of the mean number of active and passive sites, without addressing the inhomogeneity in their distribution. This paper goes one step further by proposing a kinetic description of avalanching systems making use of the distribution function for clusters of active sites. We illustrate an application of the kinetic formalism to a model proposed for the description of the avalanching processes in the reconnecting current sheet of the Earth's magnetosphere. A description of avalanching systems is proposed that makes use of the distribution function for clusters of active sites. A general kinetic equation is derived that describes the temporal evolution of the distribution function, in terms of growth and shrinking probabilities. The distribution of clusters is derived for the stationary regime, for a quite general class of avalanching systems or arbitrary dimensionality. The approach, including the probability calculation, is illustrated by an application of the kinetic description to the recently proposed burning model.

7.
Phys Rev Lett ; 95(12): 129501; discussion 129502, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197120
8.
Phys Rev Lett ; 70(9): 1259-1262, 1993 Mar 01.
Article in English | MEDLINE | ID: mdl-10054331
SELECTION OF CITATIONS
SEARCH DETAIL
...