Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(11): 1248-1260, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37493258

ABSTRACT

Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERß) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERß agonist to promote its antitumor action is limiting the therapeutic promise of ERß. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERß agonists. Because of its high activity in ERß reporter assays, specific binding to ERß in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERß than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 µmol/L, while having little to no effect on ERß-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERß target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERß agonist, offering patients with GBM a potential means of improving survival.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Mice , Animals , Glioblastoma/pathology , Estrogen Receptor beta/genetics , Cell Line, Tumor , Brain/metabolism , Estrogens , Brain Neoplasms/pathology
2.
Neuro Oncol ; 25(3): 459-470, 2023 03 14.
Article in English | MEDLINE | ID: mdl-35862252

ABSTRACT

BACKGROUND: The loss of neurogenic tumor suppressor microRNAs miR-124, miR-128, and miR-137 is associated with glioblastoma's undifferentiated state. Most of their impact comes via the repression of a network of oncogenic transcription factors. We conducted a high-throughput functional siRNA screen in glioblastoma cells and identify E74 like ETS transcription factor 4 (ELF4) as the leading contributor to oncogenic phenotypes. METHODS: In vitro and in vivo assays were used to assess ELF4 impact on cancer phenotypes. We characterized ELF4's mechanism of action via genomic and lipidomic analyses. A MAPK reporter assay verified ELF4's impact on MAPK signaling, and qRT-PCR and western blotting were used to corroborate ELF4 regulatory role on most relevant target genes. RESULTS: ELF4 knockdown resulted in significant proliferation delay and apoptosis in GBM cells and long-term growth delay and morphological changes in glioma stem cells (GSCs). Transcriptomic analyses revealed that ELF4 controls two interlinked pathways: 1) Receptor tyrosine kinase signaling and 2) Lipid dynamics. ELF4 modulation directly affected receptor tyrosine kinase (RTK) signaling, as mitogen-activated protein kinase (MAPK) activity was dependent upon ELF4 levels. Furthermore, shotgun lipidomics revealed that ELF4 depletion disrupted several phospholipid classes, highlighting ELF4's importance in lipid homeostasis. CONCLUSIONS: We found that ELF4 is critical for the GBM cell identity by controlling genes of two dependent pathways: RTK signaling (SRC, PTK2B, and TNK2) and lipid dynamics (LRP1, APOE, ABCA7, PLA2G6, and PITPNM2). Our data suggest that targeting these two pathways simultaneously may be therapeutically beneficial to GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , Transcription Factors/genetics , Glioblastoma/pathology , MicroRNAs/genetics , Receptor Protein-Tyrosine Kinases/genetics , Gene Expression Regulation, Neoplastic , Lipids , Cell Proliferation , Cell Line, Tumor , Brain Neoplasms/pathology , DNA-Binding Proteins/genetics , Protein-Tyrosine Kinases/metabolism
3.
Exp Cell Res ; 415(1): 113106, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35307409

ABSTRACT

Invasive melanoma is an aggressive form of skin cancer with high incidence of mortality. The process of tumor invasion is a crucial primary step in the metastatic cascade, yet the mechanisms involved are still under investigation. Here we document a critical role for MLK3 (MAP3K11) in the regulation of melanoma cell invasion. We report the unexpected finding that cellular loss of MLK3 in melanoma cells promotes cell invasion. Cellular depletion of MLK3 expression results in the hyperactivation of ERK, which is linked to the formation of a BRAF/Hsp90/Cdc37 protein complex. ERK hyperactivation leads to enhanced phosphorylation and inactivation of GSK3ß and the stabilization of c-Jun and JNK activity. Blocking of ERK and JNK signaling as well as Hsp90 activity downstream of MLK3-silencing significantly reduces melanoma invasion. Furthermore, ERK activation in the aforementioned context is coupled to MT1-MMP transcription as well as the TOM1L1-dependent localization of the membrane protease to invadopodia at the invasive front. These studies provide critical insight into the mechanisms that couple MLK3 loss with BRAF hyperactivation and its consequence on melanoma invasion.


Subject(s)
MAP Kinase Kinase Kinases , Melanoma , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , HSP90 Heat-Shock Proteins/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Melanoma/genetics , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
4.
Breast Cancer Res Treat ; 187(2): 375-386, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33893909

ABSTRACT

PURPOSE: The majority of breast cancers are estrogen receptor (ERα) positive making endocrine therapy a mainstay for these patients. Unfortunately, resistance to endocrine therapy is a common occurrence. Fatty acid synthase (FASN) is a key enzyme in lipid biosynthesis and its expression is commensurate with tumor grade and resistance to numerous therapies. METHODS: The effect of the FASN inhibitor TVB-3166 on ERα expression and cell growth was characterized in tamoxifen-resistant cell lines, xenografts, and patient explants. Subcellular localization of ERα was assessed using subcellular fractionations. Palmitoylation and ubiquitination of ERα were assessed by immunoprecipitation. ERα and p-eIF2α protein levels were analyzed by Western blotting after treatment with TVB-3166 with or without the addition of palmitate or BAPTA. RESULTS: TVB-3166 treatment leads to a marked inhibition of proliferation in tamoxifen-resistant cells compared to the parental cells. Additionally, TVB-3166 significantly inhibited tamoxifen-resistant breast tumor growth in mice and decreased proliferation of primary tumor explants compared to untreated controls. FASN inhibition significantly reduced ERα levels most prominently in endocrine-resistant cells and altered its subcellular localization. Furthermore, we showed that the reduction of ERα expression upon TVB-3166 treatment is mediated through the induction of endoplasmic reticulum stress. CONCLUSION: Our preclinical data provide evidence that FASN inhibition by TVB-3166 presents a promising therapeutic strategy for the treatment of endocrine-resistant breast cancer. Further clinical development of FASN inhibitors for endocrine-resistant breast cancer should be considered.


Subject(s)
Breast Neoplasms , Enzyme Inhibitors/therapeutic use , Fatty Acid Synthase, Type I/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Fatty Acid Synthase, Type I/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...