Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(18): 9594-9609, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37702151

ABSTRACT

The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, we mapped the genetic dependencies of human cell lines defective of cohesion regulators DDX11 and ESCO2. The obtained synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identify the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravates cohesion defects in ESCO2 mutant cells, leading to mitotic cell death. PAXIP1 promotes global chromatin association of cohesin, independent of DNA replication, a function that cannot be explained by indirect effects of PAXIP1 on transcription or DNA repair. Cohesin regulation by PAXIP1 requires its binding partner PAGR1 and a conserved FDF motif in PAGR1. PAXIP1 co-localizes with cohesin on multiple genomic loci, including active gene promoters and enhancers. Possibly, this newly identified role of PAXIP1-PAGR1 in regulating cohesin occupancy on chromatin is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.

2.
J Hum Genet ; 68(4): 273-279, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599954

ABSTRACT

Previously, we reported a series of families presenting with trichodiscomas, inherited in an autosomal dominant pattern. The phenotype was named familial multiple discoid fibromas (FMDF). The genetic cause of FMDF remained unknown so far. Trichodiscomas are skin lesions previously reported to be part of the same spectrum as the fibrofolliculoma observed in Birt-Hogg-Dubé syndrome (BHD), an inherited disease caused by pathogenic variants in the FLCN gene. Given the clinical and histological differences with BHD and the exclusion of linkage with the FLCN locus, the phenotype was concluded to be distinct from BHD. We performed extensive clinical evaluations and genetic testing in ten families with FMDF. We identified a FNIP1 frameshift variant in nine families and genealogical studies showed common ancestry for eight families. Using whole exome sequencing, we identified six additional rare variants in the haplotype surrounding FNIP1, including a missense variant in the PDGFRB gene that was found to be present in all tested patients with FMDF. Genome-wide linkage analysis showed that the locus on chromosome 5 including FNIP1 was the only region reaching the maximal possible LOD score. We concluded that FMDF is linked to a haplotype on chromosome 5. Additional evaluations in families with FMDF are required to unravel the exact genetic cause underlying the phenotype. When evaluating patients with multiple trichodisomas without a pathogenic variant in the FLCN gene, further genetic testing is warranted and can include analysis of the haplotype on chromosome 5.


Subject(s)
Birt-Hogg-Dube Syndrome , Fibroma , Kidney Neoplasms , Humans , Kidney Neoplasms/genetics , Chromosomes, Human, Pair 5/metabolism , Tumor Suppressor Proteins/genetics , Proto-Oncogene Proteins/genetics , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Fibroma/genetics , Carrier Proteins/genetics
3.
Hum Mol Genet ; 32(7): 1223-1235, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36440963

ABSTRACT

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder characterized by fibrofolliculomas, pulmonary cysts, pneumothoraces and renal cell carcinomas. Here, we reveal a novel hereditary disorder in a family with skin and mucosal lesions, extensive lipomatosis and renal cell carcinomas. The proband was initially diagnosed with BHD based on the presence of fibrofolliculomas, but no pathogenic germline variant was detected in FLCN, the gene associated with BHD. By whole exome sequencing we identified a heterozygous missense variant (p.(Cys677Tyr)) in a zinc-finger encoding domain of the PRDM10 gene which co-segregated with the phenotype in the family. We show that PRDM10Cys677Tyr loses affinity for a regulatory binding motif in the FLCN promoter, abrogating cellular FLCN mRNA and protein levels. Overexpressing inducible PRDM10Cys677Tyr in renal epithelial cells altered the transcription of multiple genes, showing overlap but also differences with the effects of knocking out FLCN. We propose that PRDM10 controls an extensive gene program and acts as a critical regulator of FLCN gene transcription in human cells. The germline variant PRDM10Cys677Tyr curtails cellular folliculin expression and underlies a distinguishable syndrome characterized by extensive lipomatosis, fibrofolliculomas and renal cell carcinomas.


Subject(s)
Birt-Hogg-Dube Syndrome , Carcinoma, Renal Cell , Kidney Neoplasms , Lipomatosis , Skin Neoplasms , Humans , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Carcinoma, Renal Cell/genetics , Genes, Tumor Suppressor , Skin Neoplasms/genetics , Lipomatosis/genetics , Kidney Neoplasms/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics
4.
Mol Cell Proteomics ; 21(9): 100263, 2022 09.
Article in English | MEDLINE | ID: mdl-35863698

ABSTRACT

In Birt-Hogg-Dubé (BHD) syndrome, germline loss-of-function mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN inactivation affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15,744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET, and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114, and Ser122, which may be linked to increased oxidative stress levels in FLCNNEG cells. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.


Subject(s)
Birt-Hogg-Dube Syndrome , Kidney Neoplasms , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/metabolism , Birt-Hogg-Dube Syndrome/pathology , Ephrins , ErbB Receptors , Humans , Kidney Neoplasms/genetics , Phosphoserine , Proto-Oncogene Proteins , TOR Serine-Threonine Kinases , Tumor Suppressor Proteins , Tyrosine
5.
Sci Adv ; 8(3): eabk0114, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35044816

ABSTRACT

Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients' cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.


Subject(s)
Chromosome Segregation , Microcephaly , Aneuploidy , Chromosome Segregation/genetics , Humans , Microcephaly/genetics , Mutation , Protein Serine-Threonine Kinases/genetics
6.
Elife ; 102021 01 18.
Article in English | MEDLINE | ID: mdl-33459596

ABSTRACT

Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt-Hogg-Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.


Subject(s)
Carrier Proteins/genetics , Epithelial Cells/metabolism , Kidney/metabolism , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics , Carrier Proteins/metabolism , Germ-Line Mutation , Humans , Interferons/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
7.
Nat Commun ; 11(1): 4287, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32855419

ABSTRACT

Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.


Subject(s)
Abnormalities, Multiple/etiology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , G-Quadruplexes , Sister Chromatid Exchange , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Cell Proliferation , DEAD-box RNA Helicases/chemistry , DNA Helicases/chemistry , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Humans , Male , Middle Aged , Mutation, Missense , Protein Stability , Pseudogenes , RNA Helicases/genetics , RNA Helicases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Syndrome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Dev Cell ; 52(6): 683-698.e7, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32084359

ABSTRACT

Premature loss of sister chromatid cohesion at metaphase is a diagnostic marker for different cohesinopathies. Here, we report that metaphase spreads of many cancer cell lines also show premature loss of sister chromatid cohesion. Cohesion loss occurs independently of mutations in cohesion factors including SA2, a cohesin subunit frequently inactivated in cancer. In untransformed cells, induction of DNA replication stress by activation of oncogenes or inhibition of DNA replication is sufficient to trigger sister chromatid cohesion loss. Importantly, cell growth under conditions of replication stress requires the cohesin remover WAPL. WAPL promotes rapid RAD51-dependent repair and restart of broken replication forks. We propose that active removal of cohesin allows cancer cells to overcome DNA replication stress. This leads to oncogene-induced cohesion loss from newly synthesized sister chromatids that may contribute to genomic instability and likely represents a targetable cancer cell vulnerability.


Subject(s)
Carrier Proteins/metabolism , Chromatids/genetics , DNA Repair , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , ras Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cells, Cultured , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , HEK293 Cells , Humans , Mice , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , Cohesins
9.
PLoS One ; 15(1): e0220348, 2020.
Article in English | MEDLINE | ID: mdl-31935221

ABSTRACT

In a process linked to DNA replication, duplicated chromosomes are entrapped in large, circular cohesin complexes and functional sister chromatid cohesion (SCC) is established by acetylation of the SMC3 cohesin subunit. Roberts Syndrome (RBS) and Warsaw Breakage Syndrome (WABS) are rare human developmental syndromes that are characterized by defective SCC. RBS is caused by mutations in the SMC3 acetyltransferase ESCO2, whereas mutations in the DNA helicase DDX11 lead to WABS. We found that WABS-derived cells predominantly rely on ESCO2, not ESCO1, for residual SCC, growth and survival. Reciprocally, RBS-derived cells depend on DDX11 to maintain low levels of SCC. Synthetic lethality between DDX11 and ESCO2 correlated with a prolonged delay in mitosis, and was rescued by knockdown of the cohesin remover WAPL. Rescue experiments using human or mouse cDNAs revealed that DDX11, ESCO1 and ESCO2 act on different but related aspects of SCC establishment. Furthermore, a DNA binding DDX11 mutant failed to correct SCC in WABS cells and DDX11 deficiency reduced replication fork speed. We propose that DDX11, ESCO1 and ESCO2 control different fractions of cohesin that are spatially and mechanistically separated.


Subject(s)
Acetyltransferases/genetics , Cell Cycle Proteins/genetics , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/genetics , DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , Epithelial Cells/enzymology , Fibroblasts/enzymology , Acetyltransferases/metabolism , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Transformed , Cell Proliferation , Chromatids/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Breakage , Chromosome Segregation , Craniofacial Abnormalities/enzymology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , DEAD-box RNA Helicases/metabolism , DNA Helicases/metabolism , Ectromelia/enzymology , Ectromelia/genetics , Ectromelia/pathology , Epithelial Cells/pathology , Fibroblasts/pathology , Gene Expression , Humans , Hypertelorism/enzymology , Hypertelorism/genetics , Hypertelorism/pathology , Mice , Mitosis , Models, Biological , Mutation , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Cohesins
10.
Cancer Res ; 75(17): 3543-53, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26122845

ABSTRACT

Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Chromosomal Instability/genetics , Fanconi Anemia/genetics , Head and Neck Neoplasms/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Chromatids/genetics , DNA Damage/genetics , DNA Repair/genetics , Fanconi Anemia/pathology , Female , Head and Neck Neoplasms/pathology , Humans , Male , Mutation , Neoplasm Staging , Sister Chromatid Exchange , Squamous Cell Carcinoma of Head and Neck
11.
DNA Repair (Amst) ; 26: 54-64, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25583207

ABSTRACT

The encouraging response rates of BRCA1- and BRCA2-mutated cancers toward PARP inhibitors make it worthwhile to identify other potential determinants of PARP inhibitor responsiveness. Since the Fanconi anemia (FA) pathway coordinates several DNA repair pathways, including homologous recombination in which BRCA1 and BRCA2 play important roles, we investigated whether this pathway harbors other predictors of PARP inhibitor sensitivity. Lymphoblastoid cell lines derived from individuals with FA or clinically related syndromes, such as Warsaw breakage syndrome, were tested for PARP inhibitor sensitivity. Remarkably, we found a strong variability in PARP inhibitor sensitivity among different FANCD1/BRCA2-deficient lymphoblasts, suggesting that PARP inhibitor response depends on the type of FANCD1/BRCA2 mutation. We identified the DNA helicases FANCM and DDX11 as determinants of PARP inhibitor response. These results may extend the utility of PARP inhibition as effective anticancer treatment.


Subject(s)
DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , Enzyme Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , BRCA2 Protein/genetics , Cell Line, Transformed , Fanconi Anemia/genetics , Female , Fluorobenzenes/pharmacology , Gene Knockdown Techniques , Humans , Male , Phthalazines/pharmacology
13.
Int J Parasitol ; 40(14): 1587-97, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20647015

ABSTRACT

Tick control on livestock relies principally on the use of acaricides but the development of acaricide resistance and concerns for environmental pollution underscore the need for alternative control methods, for instance through the use of anti-tick vaccines. Two commercial vaccines based on the recombinant Bm86 protein from Rhipicephalus (Boophilus) microplus ticks were developed. Partial protection of the Bm86 vaccine against other Rhipicephalus (Boophilus) and Hyalomma tick species suggests that the efficacy of a Bm86-based vaccine may be enhanced when based on the orthologous recombinant Bm86 antigen. We therefore identified and analysed the Bm86 homologues from species representing the main argasid and ixodid tick genera, including two from the prostriate Ixodes ricinus tick species. A novel protein from metastriate ticks with multiple epidermal growth factor (EGF)-like domains which is structurally related to Bm86 was identified by using a 3' rapid amplification of cDNA ends (3'-RACE) method with a degenerate primer based on a highly conserved region of Bm86 and its orthologues. This second protein was named ATAQ after a part of its signature peptide. Quantitative reverse transcriptase-PCR showed that ATAQ proteins are expressed in both midguts and Malpighian tubules, in contrast to Bm86 orthologues which are expressed exclusively in tick midguts. Furthermore, expression of this protein over the life stages of R. microplus and Rhipicephalus appendiculatus was more continuous compared with Bm86. Although a highly effective vaccine antigen, gene silencing of Bm86 by RNA interference (RNAi) produced only a weak phenotype. Similarly the RNAi phenotype of Rhipicephalus evertsi evertsi females in which the expression of Ree86, ReeATAQ or a combination of both genes was silenced by RNAi did not differ from a mock-injected control group. The vaccine potential of ATAQ proteins against tick infestations is yet to be evaluated.


Subject(s)
Argasidae/genetics , Proteins/genetics , Rhipicephalus/genetics , Amino Acid Sequence , Animals , Argasidae/chemistry , Argasidae/classification , Argasidae/immunology , Cattle , Female , Gene Expression Regulation , Male , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Proteins/chemistry , Proteins/immunology , Rabbits , Rhipicephalus/chemistry , Rhipicephalus/classification , Rhipicephalus/immunology , Tick Infestations/parasitology , Tick Infestations/prevention & control , Vaccines/chemistry , Vaccines/genetics , Vaccines/immunology
14.
BMC Mol Biol ; 10: 112, 2009 Dec 29.
Article in English | MEDLINE | ID: mdl-20040102

ABSTRACT

BACKGROUND: For accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is essential. In most studies on ticks where (semi-)quantitative RT-PCR is employed, normalization occurs with a single reference gene, usually beta-actin, without validation of its presumed expression stability. The first goal of this study was to evaluate the expression stability of commonly used reference genes in Rhipicephalus appendiculatus and Rhipicephalus (Boophilus) microplus ticks. To demonstrate the usefulness of these results, an unresolved issue in tick vaccine development was examined. Commercial vaccines against R. microplus were developed based on the recombinant antigen Bm86, but despite a high degree of sequence homology, these vaccines are not effective against R. appendiculatus. In fact, Bm86-based vaccines give better protection against some tick species with lower Bm86 sequence homology. One possible explanation is the variation in Bm86 expression levels between R. microplus and R. appendiculatus. The most stable reference genes were therefore used for normalization of the Bm86 expression profile in all life stages of both species to examine whether antigen abundance plays a role in Bm86 vaccine susceptibility. RESULTS: The transcription levels of nine potential reference genes: beta-actin (ACTB), beta-tubulin (BTUB), elongation factor 1alpha (ELF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glutathione S-transferase (GST), H3 histone family 3A (H3F3A), cyclophilin (PPIA), ribosomal protein L4 (RPL4) and TATA box binding protein (TBP) were measured in all life stages of R. microplus and R. appendiculatus. ELF1A was found to be the most stable expressed gene in both species following analysis by both geNorm and Normfinder software applications, GST showed the least stability. The expression profile of Bm86 in R. appendiculatus and R. microplus revealed a more continuous Bm86 antigen abundance in R. microplus throughout its one-host life cycle compared to the three-host tick R. appendiculatus where large variations were observed between different life stages. CONCLUSION: Based on these results, ELF1A can be proposed as an initial reference gene for normalization of quantitative RT-PCR data in whole R. microplus and R. appendiculatus ticks. The observed differences in Bm86 expression profile between the two species alone can not adequately explain the lack of a Bm86 vaccination effect in R. appendiculatus.


Subject(s)
Membrane Glycoproteins/analysis , Recombinant Proteins/analysis , Rhipicephalus/chemistry , Vaccines/chemistry , Animals , Base Sequence , Gene Expression Profiling , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction , Rhipicephalus/genetics , Rhipicephalus/growth & development , Sequence Alignment , Sequence Analysis, DNA , Vaccines/analysis , Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...