Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Death Differ ; 31(3): 335-347, 2024 03.
Article in English | MEDLINE | ID: mdl-38396150

ABSTRACT

During apoptosis mediated by the intrinsic pathway, BAX/BAK triggers mitochondrial permeabilization and the release of cytochrome-c, followed by a dramatic remodelling of the mitochondrial network that results in mitochondrial herniation and the subsequent release of pro-inflammatory mitochondrial components. Here, we show that mitochondrial herniation and subsequent exposure of the inner mitochondrial membrane (IMM) to the cytoplasm, initiates a unique form of mitophagy to deliver these damaged organelles to lysosomes. IMM-induced mitophagy occurs independently of canonical PINK1/Parkin signalling and is driven by ubiquitination of the IMM. Our data suggest IMM-induced mitophagy is an additional safety mechanism that cells can deploy to contain damaged mitochondria. It may have particular relevance in situations where caspase activation is incomplete or inhibited, and in contexts where PINK1/Parkin-mitophagy is impaired or overwhelmed.


Subject(s)
Mitophagy , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Mitochondrial Membranes/metabolism , Protein Kinases/metabolism
2.
Nat Commun ; 14(1): 5666, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723181

ABSTRACT

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , I-kappa B Kinase , Disease Models, Animal , SARS-CoV-2 , Inflammation
3.
EMBO J ; 42(12): e112712, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37139896

ABSTRACT

cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.


Subject(s)
Immunity, Innate , Membrane Proteins , Mice , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Nucleotidyltransferases/metabolism , DNA , Endosomal Sorting Complexes Required for Transport/genetics
4.
mBio ; 13(4): e0206422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35924852

ABSTRACT

Cytoplasmic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) is an essential component of antiviral responses. Upon synthesis, cGAMP binds to the stimulator of interferon (IFN) genes (STING) in infected and adjacent cells through intercellular transfer by connexins forming gap-junctions, eliciting a strong IFN-ß-driven antiviral response. We demonstrate here that Genistein, a flavonoid compound naturally occurring in soy-based foods, inhibits cGAS-STING antiviral signaling at two levels. First, Genistein pretreatment of cGAMP-producing cells inhibited gap-junction intercellular communication, resulting in reduced STING responses in adjacent cells. In addition, Genistein directly blocked STING activation by the murine agonist DMXAA, by decreasing the interaction of STING with TBK1 and IKKε. As a result, Genistein attenuated STING signaling in human and mouse cells, dampening antiviral activity against Semliki Forest Virus infection. Collectively, our findings identify a previously unrecognized proviral activity of Genistein mediated via its inhibitory effects at two levels of cGAS-STING signaling. IMPORTANCE Several reports suggest that Genistein exhibits antiviral activities against DNA viruses. Our work uncovers a previously unrecognized proviral effect of Genistein, through inhibition of the cGAS-STING pathway at the level of cGAMP transfer and its sensing by STING. This suggests that the use of Genistein as an antiviral should be taken with caution as it may reduce the protective antiviral effects elicited by host STING activation.


Subject(s)
Genistein , Membrane Proteins , Animals , Antiviral Agents/pharmacology , Genistein/pharmacology , Humans , Immunity, Innate/genetics , Interferon-beta/metabolism , Membrane Proteins/metabolism , Mice , Nucleotidyltransferases/genetics
5.
Front Immunol ; 13: 794776, 2022.
Article in English | MEDLINE | ID: mdl-35281062

ABSTRACT

Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.


Subject(s)
Interferon Type I , Animals , Cell Death , Cytosol/metabolism , Dendritic Cells/metabolism , Humans , Interferon Type I/metabolism , Membrane Proteins , Mice , Signal Transduction
6.
Sci Immunol ; 7(68): eabi6763, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148201

ABSTRACT

Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αß) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.


Subject(s)
Immunity, Innate/immunology , Interleukins/immunology , eIF-2 Kinase/immunology , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , eIF-2 Kinase/deficiency
7.
FEBS J ; 288(19): 5504-5529, 2021 10.
Article in English | MEDLINE | ID: mdl-33237620

ABSTRACT

Detection of microbial nucleic acids via innate immune receptors is critical for establishing host defence against pathogens. The DNA-sensing cGAS-STING pathway has gained increasing attention in the last decade as a key pathway for combating viral and bacterial infections. cGAS-STING activation primarily promotes the secretion of antiviral type I IFNs via the key transcription factor, IRF3. In addition, cGAS-STING signalling also elicits proinflammatory cytokines through NF-κB activity. Activation of IRF3 and NF-κB is mediated by the chief signalling receptor protein STING. Interestingly, STING undergoes significant trafficking events across multiple subcellular locations, which regulates both the activation of downstream signalling pathways, as well as appropriate termination of the responses. Studies to date have provided a comprehensive view of the regulation and role of the IRF3-IFN pathway downstream of STING. However, many aspects of STING signalling remain relatively poorly defined. This review will explore the current understanding of the mechanisms through which STING elicits inflammatory and antimicrobial responses, focusing on the precise signalling and intracellular trafficking events that occur. We will also discuss exciting and emerging concepts in the field, including the importance of IFN-independent STING responses for host defence and during STING-related disease.


Subject(s)
Host-Pathogen Interactions/genetics , Interferon Regulatory Factor-3/genetics , Membrane Proteins/genetics , Nucleotidyltransferases/genetics , Bacterial Infections/genetics , Bacterial Infections/microbiology , Humans , Immunity, Innate/genetics , Interferon Type I , Membrane Proteins/immunology , NF-kappa B/genetics , Nucleotidyltransferases/immunology , Signal Transduction/genetics , Virus Diseases/genetics , Virus Diseases/virology
8.
Cell ; 183(3): 636-649.e18, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33031745

ABSTRACT

Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Nucleotidyltransferases/metabolism , Alarmins/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cytoplasm/metabolism , Disease Models, Animal , Disease Progression , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/metabolism , Interferon Type I/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , NF-kappa B/metabolism , Nerve Degeneration/pathology , Phosphotransferases (Alcohol Group Acceptor) , Protein Subunits/metabolism , Signal Transduction
9.
Cell Rep ; 31(1): 107492, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268090

ABSTRACT

Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.


Subject(s)
I-kappa B Kinase/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Female , HEK293 Cells , Humans , I-kappa B Kinase/physiology , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , NF-kappa B/metabolism , Nucleotides, Cyclic/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Signal Transduction/immunology
10.
mBio ; 11(1)2020 01 28.
Article in English | MEDLINE | ID: mdl-31992625

ABSTRACT

Activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in antiviral responses to many DNA viruses. Sensing of cytosolic DNA by cGAS results in synthesis of the endogenous second messenger cGAMP that activates stimulator of interferon genes (STING) in infected cells. Critically, cGAMP can also propagate antiviral responses to uninfected cells through intercellular transfer, although the modalities of this transfer between epithelial and immune cells remain poorly defined. We demonstrate here that cGAMP-producing epithelial cells can transactivate STING in cocultured macrophages through direct cGAMP transfer. cGAMP transfer was reliant upon connexin expression by epithelial cells and pharmacological inhibition of connexins blunted STING-dependent transactivation of the macrophage compartment. Macrophage transactivation by cGAMP contributed to a positive-feedback loop amplifying antiviral responses, significantly protecting uninfected epithelial cells against viral infection. Collectively, our findings constitute the first direct evidence of a connexin-dependent cGAMP transfer to macrophages by epithelial cells, to amplify antiviral responses.IMPORTANCE Recent studies suggest that extracellular cGAMP can be taken up by macrophages to engage STING through several mechanisms. Our work demonstrates that connexin-dependent communication between epithelial cells and macrophages plays a significant role in the amplification of antiviral responses mediated by cGAMP and suggests that pharmacological strategies aimed at modulating connexins may have therapeutic applications to control antiviral responses in humans.


Subject(s)
Connexins/metabolism , Host-Pathogen Interactions , Nucleotides, Cyclic/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Virus Diseases/etiology , Virus Diseases/metabolism , Animals , Biomarkers , Cells, Cultured , Host-Pathogen Interactions/immunology , Humans , Immunomodulation , Mice
11.
J Leukoc Biol ; 105(2): 339-351, 2019 02.
Article in English | MEDLINE | ID: mdl-30256449

ABSTRACT

TLRs are expressed on the plasma and endosomal membranes of innate immune cells acting as sensors of foreign and inherent danger signals that threaten the host. Upon activation, TLRs facilitate the assembly of large intracellular oligomeric signaling complexes, termed Myddosomes, which initiate key signal transduction pathways to elicit critical inflammatory immune responses. The formation of the Myddosome is integral for TLR signaling; however, the molecular mechanisms controlling its formation, disassembly, and the subsequent proximal signaling events remain to be clearly defined. In this review, we present a brief overview of TLR signal transduction pathways, summarize the current understanding of the Myddosome and the proteins that comprise its structure, including MyD88 and members of the IL-1 receptor-associated kinase (IRAK) family. Finally, we will discuss recent advances and open questions regarding early TLR signaling in the context of the Myddosome complex.


Subject(s)
Multiprotein Complexes/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , Animals , Humans , Models, Biological
12.
J Biol Chem ; 293(39): 15195-15207, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30076215

ABSTRACT

Toll-like receptors (TLRs) form part of the host innate immune system, in which they act as sensors of microbial and endogenous danger signals. Upon TLR activation, the intracellular Toll/interleukin-1 receptor domains of TLR dimers initiate oligomerization of a multiprotein signaling platform comprising myeloid differentiation primary response 88 (MyD88) and members of the interleukin-1 receptor-associated kinase (IRAK) family. Formation of this myddosome complex initiates signal transduction pathways, leading to the activation of transcription factors and the production of inflammatory cytokines. To date, little is known about the assembly and disassembly of the myddosome and about the mechanisms by which these complexes mediate multiple downstream signaling pathways. Here, we isolated myddosome complexes from whole-cell lysates of TLR-activated primary mouse macrophages and from IRAK reporter macrophages to examine the kinetics of myddosome assembly and disassembly. Using a selective inhibitor of IRAK4's kinase activity, we found that whereas TLR cytokine responses were ablated, myddosome formation was stabilized in the absence of IRAK4's kinase activity. Of note, IRAK4 inhibition had only a minimal effect on NF-κB and mitogen-activated protein kinase (MAPK) signaling. In summary, our results indicate that IRAK4 has a critical scaffold function in myddosome formation and that its kinase activity is dispensable for myddosome assembly and activation of the NF-κB and MAPK pathways but is essential for MyD88-dependent production of inflammatory cytokines. Our findings suggest that the scaffold function of IRAK4 may be an attractive target for treating inflammatory and autoimmune diseases.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/genetics , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptors/genetics , Animals , Humans , Interleukin-1 Receptor-Associated Kinases/chemistry , Macrophages/chemistry , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Myeloid Differentiation Factor 88/chemistry , NF-kappa B/genetics , Phosphorylation , Signal Transduction , Toll-Like Receptors/chemistry
13.
Front Immunol ; 9: 1535, 2018.
Article in English | MEDLINE | ID: mdl-30038614

ABSTRACT

BACKGROUND: Mutations in the gene encoding stimulator of interferon genes (STING) underlie a type I interferon (IFN) associated disease, STING-associated vasculopathy with onset in infancy (SAVI). Patients suffer cutaneous vasculopathy and interstitial lung disease, but are not known to suffer life-threatening infection. CASE: We describe a child who presented with Pneumocystis jirovecii pneumonia in early life, from which he recovered. He went on to suffer failure to thrive, developmental delay, livedo reticularis, and vesicular rash, but without cutaneous vasculitis, and with normal C-reactive protein and erythrocyte sedimentation rates. At 3 years of age, he developed life-threatening pulmonary hypertension. METHODS: Whole genome sequencing (WGS) was performed using the Illumina HiSeqX10 platform and the Seave platform was used for bioinformatic analysis. mRNA expression of IFN-stimulated genes and inflammatory cytokines from peripheral blood mononuclear cells was determined by quantitative polymerase chain reaction. Luciferase assay was used to model IFNß and NF-κB activity in vitro. RESULTS: WGS revealed a de novo mutation p.Arg284Ser in STING at an amino acid previously associated with SAVI. Although this mutation did not fall in the dimerization domain (DD), mRNA analysis revealed constitutive IFN-gene activation consistent with an interferonopathy, which correlated to STING activation in vitro. The patient was treated with corticosteroids and the JAK inhibitor Ruxolitinib, resulting in a rapid improvement of pulmonary hypertension, general well-being, and resolution of the IFN gene signature. However, he did go on to evolve a nasal septal erosion suggesting incomplete control of disease. CONCLUSION: This case provides molecular evidence to support the p.Arg284Ser variant in STING exerting pathogenicity through a gain-of-function mechanism. The lack of cutaneous vasculitis or elevated systemic inflammatory markers, and the occurrence of an opportunistic infection are notable, and raise the possibility that variants outside the STING DD may potentially manifest with an atypical SAVI phenotype. Nevertheless, there was an objective clinical improvement in response to JAK inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL
...