Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 12: e17640, 2024.
Article in English | MEDLINE | ID: mdl-39071125

ABSTRACT

Anthropogenic stressors like overfishing, land based runoff, and increasing temperatures cause the degradation of coral reefs, leading to the loss of corals and other calcifiers, increases in competitive fleshy algae, and increases in microbial pathogen abundance and hypoxia. To test the hypothesis that corals would be healthier by moving them off the benthos, a common garden experiment was conducted in which corals were translocated to midwater geodesic spheres (hereafter called Coral Reef Arks or Arks). Coral fragments translocated to the Arks survived significantly longer than equivalent coral fragments translocated to Control sites (i.e., benthos at the same depth). Over time, average living coral surface area and volume were higher on the Arks than the Control sites. The abundance and biomass of fish were also generally higher on the Arks compared to the Control sites, with more piscivorous fish on the Arks. The addition of Autonomous Reef Monitoring Structures (ARMS), which served as habitat for sessile and motile reef-associated organisms, also generally significantly increased fish associated with the Arks. Overall, the Arks increased translocated coral survivorship and growth, and exhibited knock-on effects such as higher fish abundance.


Subject(s)
Anthozoa , Biomass , Coral Reefs , Fishes , Animals , Anthozoa/microbiology , Anthozoa/physiology
2.
J Vis Exp ; (191)2023 01 06.
Article in English | MEDLINE | ID: mdl-36688558

ABSTRACT

Coral reefs thrive and provide maximal ecosystem services when they support a multi-level trophic structure and grow in favorable water quality conditions that include high light levels, rapid water flow, and low nutrient levels. Poor water quality and other anthropogenic stressors have caused coral mortality in recent decades, leading to trophic downgrading and the loss of biological complexity on many reefs. Solutions to reverse the causes of trophic downgrading remain elusive, in part because efforts to restore reefs are often attempted in the same diminished conditions that caused coral mortality in the first place. Coral Arks, positively buoyant, midwater structures, are designed to provide improved water quality conditions and supportive cryptic biodiversity for translocated and naturally recruited corals to assemble healthy reef mesocosms for use as long-term research platforms. Autonomous Reef Monitoring Structures (ARMS), passive settlement devices, are used to translocate the cryptic reef biodiversity to the Coral Arks, thereby providing a "boost" to natural recruitment and contributing ecological support to the coral health. We modeled and experimentally tested two designs of Arks to evaluate the drag characteristics of the structures and assess their long-term stability in the midwater based on their response to hydrodynamic forces. We then installed two designs of Arks structures at two Caribbean reef sites and measured several water quality metrics associated with the Arks environment over time. At deployment and 6 months after, the Coral Arks displayed enhanced metrics of reef function, including higher flow, light, and dissolved oxygen, higher survival of translocated corals, and reduced sedimentation and microbialization relative to nearby seafloor sites at the same depth. This method provides researchers with an adaptable, long-term platform for building reef communities where local water quality conditions can be adjusted by altering deployment parameters such as the depth and site.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Anthozoa/physiology , West Indies , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL