ABSTRACT
A study of the OH + SO â H + SO2 reaction using a quasi-classical trajectory method is presented with the aim of investigating the role of the ro-vibrational energy of the reactants in the reactivity. The calculations were carried out using a previously reported global potential energy surface for HSO2((2)A). Different initial conditions with one and both reactants ro-vibrationally excited were studied. The reactive cross sections, for each studied combination, are calculated and then fitted to a capture-like model combined with a factor accounting for the recrossing effects. The Vibrational Energy Quantum Mechanical Threshold of the Complex method was used to correct for the zero-point vibrational energy leakage of the classical calculations. State specific and averaged rate constants are reported. The reactivity is affected when ro-vibrational energy of either of the reactants is changed. The present calculations provide a theoretical support for the experimental rate constant for temperatures below 550 K, but fail to account for the significant fall in the observed rate constant upon increasing the temperature above this value.
ABSTRACT
A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.
ABSTRACT
High levels of wet N and acidic deposition were measured in southeast Brazil. In this study we addressed the sensitivity of water bodies and soils to acidification and N deposition in the Piracicaba River basin (12,400 km2). Average acid neutralization capacity (ANC) at 23 river sampling sites varied from 350 to 1800 microeq l(-1). Therefore, rivers and streams in the Piracicaba basin are well buffered, if the lower limit of 200 microeq l(-1) is assumed as an indication of poorly buffered waters. ANC is increased by untreated wastewaters discarded into rivers and streams of the region. Average NO3 concentrations varied from 20 to 70 microeq l(-1). At the most polluted river sites, NO3 concentration is not highest, however, probably due to NO3 reduction and denitrification. Most of the nitrogen in streams is also provided by wastewaters and not by wet deposition. The majority of the soils in the basin, however, are acidic with a low base cation content and high aluminum concentration. Therefore, soils in this basin are poorly buffered and, in areas of forest over sandy soils, acidification may be a problem.