Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(4): 3632-3646, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38224163

ABSTRACT

Acetonitrile (CH3CN) is present in the interstellar medium (ISM) in a variety of environments. However, at the ultracold temperatures of the ISM, radical-molecule reactions are not widely investigated because of the experimental handicap of getting organic molecules in the gas phase by conventional techniques. The CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique solves this problem. For this reason, we present in this work the kinetic study of the gas-phase reaction of CH3CN with one of the most ubiquitous radicals, the hydroxyl (OH) radical, as a function of temperature (11.7-177.5 K). The kinetic technique employed to investigate the CH3CN + OH reaction was the pulsed laser photolysis-laser induced fluorescence. The rate coefficient for this reaction k(T) has been observed to drastically increase from 177.5 K to 107.0 K (about 2 orders of magnitude), while the increase in k(T) from 107.0 K to 11.7 K was milder (around 4 times). The temperature dependent expressions for k(T) are provided in the two distinct T-ranges, excluding the upper limit obtained for k(177.5 K): In addition, the rate coefficients estimated by the canonical competitive unified statistical (CCUS) theory show a similar behaviour to the experimental results, when evaluated within the high-pressure limit. This is consistent with the experimentally observed independence of k(T) with total gas density at selected temperatures. Astrochemical networks, such as the KIDA database or UMIST, do not include the CH3CN + OH reaction as a potential depletion process for acetonitrile in the ISM because the current studies predict very low rate coefficients at IS temperatures. According to the model (T = 10 K), the impact of the titled reaction on the abundances of CH3CN appears to be negligible in dark molecular clouds of the ISM (∼1% of the total depletion reactions included in UMIST network). With respect to the potential formation of the CH2CN radical in those environments, even in the most favourable scenario, where this radical could be formed in a 100% yield from the CH3CN + OH reaction, this route would only contribute around 2% to the current assumed formation routes by the UMIST network.

2.
Phys Chem Chem Phys ; 24(38): 23593-23601, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36134502

ABSTRACT

Nitrogen-bearing molecules, like methylamine (CH3NH2), can be the building blocks of amino acids in the interstellar medium (ISM). At the ultralow temperatures of the ISM, it is important to know its gas-phase reactivity towards interstellar radicals and the products formed. In this work, the kinetics of the OH + CH3NH2 reaction was experimentally and theoretically investigated at low- and high-pressure limits (LPL and HPL) between 10 and 1000 K. Moreover, the CH2NH2 and CH3NH yields were computed in the same temperature range for both pressure regimes. A pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus was employed to determine the rate coefficient, k(T), in the 11.7-177.5 K range. A drastic increase of k(T) when the temperature is lowered was observed in agreement with theoretical calculations, evaluated by the competitive canonical unified statistical (CCUS) theory, below 300 K in the LPL regime. The same trend was observed in the HPL regime below 350 K, but the theoretical k(T) values were higher than the experimental ones. Above 200 K, the calculated rate coefficients are improved with respect to previous computational studies and are in excellent agreement with the experimental literature data. In the LPL, the formation of CH3NH becomes largely dominant below ca. 100 K. Conversely, in the HPL regime, CH2NH2 is the only product below 100 K, whereas CH3NH becomes dominant at 298 K with a branching ratio similar to the one found in the LPL regime (≈70%). At T > 300 K, both reaction channels are competitive independently of the pressure regime.

3.
Phys Chem Chem Phys ; 22(36): 20562-20572, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966434

ABSTRACT

Gas-phase reactions in the interstellar medium (ISM) are a source of molecules in this environment. The knowledge of the rate coefficient for neutral-neutral reactions as a function of temperature, k(T), is essential to improve astrochemical models. In this work, we have experimentally measured k(T) for the reaction between the OH radical and acetaldehyde, both present in many sources of the ISM. Laser techniques coupled to a CRESU system were used to perform the kinetic measurements. The obtained modified Arrhenius equation is k(T = 11.7-177.5 K) = (1.2 ± 0.2) × 10-11 (T/300 K)-(1.8±0.1) exp-{(28.7 ± 2.5)/T} cm3 molecule-1 s-1. The k(T) value of the title reaction has been measured for the first time below 60 K. No pressure dependence of k(T) was observed at ca. 21, 50, 64 and 106 K. Finally, a pure gas-phase model indicates that the title reaction could become the main CH3CO formation pathway in dark molecular clouds, assuming that CH3CO is the main reaction product at 10 K.

4.
ACS Earth Space Chem ; 3(9): 1873-1883, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31799490

ABSTRACT

The rate coefficient, k(T), for the gas-phase reaction between OH radicals and acetone CH3C(O)CH3, has been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique (T = 11.7-64.4 K). The temperature dependence of k(T = 10-300 K) has also been computed using a RRKM-Master equation analysis after partial revision of the potential energy surface. In agreement with previous studies we found that the reaction proceeds via initial formation of two pre-reactive complexes both leading to H2O + CH3C(O)CH2 by H-abstraction tunneling. The experimental k(T) was found to increase as temperature was lowered. The measured values have been found to be several orders of magnitude higher than k(300 K). This trend is reproduced by calculations, with a special good agreement with experiments below 25 K. The effect of total gas density on k(T) has been explored. Experimentally, no pressure dependence of k(20 K) and k(64 K) was observed, while k(50 K) at the largest gas density 4.47×1017 cm-3 is twice higher than the average values found at lower densities. The computed k(T) is also reported for 103 cm-3 of He (representative of the interstellar medium). The predicted rate coefficients at 10 K surround the experimental value which appears to be very close to the low pressure regime prevailing in the interstellar medium. For gas-phase model chemistry of interstellar molecular clouds, we suggest using the calculated value of 1.8×10-10 cm3 molecule-1 s-1 at 10 K and the reaction products are water and CH3C(O)CH2 radicals.

5.
Phys Chem Chem Phys ; 21(13): 6942-6957, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30868151

ABSTRACT

The reactivity of methanol (CH3OH) toward the hydroxyl (OH) radical was investigated in the temperature range 11.7-177.5 K using the CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique. In the present study, the temperature dependence of the rate coefficient for the OH + CH3OH reaction, k(T), has been revisited and additional experimental and computational data are reported. New kinetic measurements were performed to fill the existing gaps (<22 K, 22-42 K and 88-123 K), reporting k(T < 20 K) for the first time. The lowest temperature ever achieved by a pulsed CRESU has been obtained in this work (11.7 K). k(T) abruptly increases by almost 2 orders of magnitude from 177.5 K to around 100 K. At T < 100 K, this increase is less pronounced, reaching the capture limit at temperatures below 22 K. The pressure dependence of k(T) has been investigated for selected temperatures and gas densities (1.5 × 1016 to 4.3 × 1017 cm-3), combining our results with those previously reported. No dependence was observed within the experimental uncertainties below 110 K. The high- and low-pressure rate coefficients, kHPL(T) and kLPL(T), were also studied in detail using high-level quantum chemical and theoretical kinetic methodologies, closely reproducing the experimental data between 20 and 400 K. The results suggest that the experimental data are near the high pressure limit at the lowest temperatures, but that the reaction remains a fast and effective source of CH2OH and CH3O at the low pressures and temperatures prevalent in the interstellar medium.

6.
J Phys Chem A ; 121(43): 8322-8331, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28992690

ABSTRACT

We report here the rate coefficients for the OH reactions (kOH) with E-CF3CH═CHF and Z-CF3CH═CHF, potential substitutes of HFC-134a, as a function of temperature (263-358 K) and pressure (45-300 Torr) by pulsed laser photolysis coupled to laser-induced fluorescence techniques. For the E-isomer, the existing discrepancy among previous results on the T dependence of kOH needs to be elucidated. For the Z-isomer, this work constitutes the first absolute determination of kOH. No pressure dependence of kOH was observed, while kOH exhibits a non-Arrhenius behavior: kOH(E) = [Formula: see text] and kOH(Z) = [Formula: see text] cm3 molecule-1 s-1, where uncertainties are 2σ. UV absorption cross sections, σλ, are reported for the first time. From σλ and considering a photolysis quantum yield of 1, an upper limit for the photolysis rate coefficients and lifetimes due to this process in the troposphere are estimated: 3 × 10-8 s-1 and >1 year for the E-isomer and 2 × 10-7 s-1 and >2 months for Z-CF3CH═CHF, respectively. Under these conditions, the overall estimated tropospheric lifetimes are 15 days (for the E-isomer) and 8 days (for the Z-isomer), the major degradation pathway being the OH reaction, with a contribution of the photolytic pathway of less than 3% (for E) and 13% (for Z). IR absorption cross sections were determined both experimentally (500-4000 cm-1) and theoretically (0-2000 cm-1). From the theoretical IR measurements, it is concluded that the contribution of the 0-500 cm-1 region to the total integrated cross sections is appreciable for the E-isomer (9%) but almost negligible for the Z-isomer (0.5%). Nevertheless, the impact on their radiative efficiency and global warming potential is negligible.

7.
Chemosphere ; 167: 330-343, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27736711

ABSTRACT

Rate coefficients for the gas-phase reactions of CxF2x+1CHCH2 (x = 1, 2, 3, 4 and 6) with Cl atoms were determined at (298 ± 2) K and (710 ± 5) Torr of air using a relative rate technique. Two experimental setups with simulation chambers were employed with Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography coupled to Mass Spectrometry (GC-MS) as detection techniques. The Cl-rate coefficients obtained were (in 10-10 cm3 molecule-1 s-1): (0.85 ± 0.11) for CF3CHCH2, (1.11 ± 0.08) for C2F5CHCH2, (1.12 ± 0.18) for C3F7CHCH2, (0.97 ± 0.09) for C4F9CHCH2, and (0.99 ± 0.08) for C6F13CHCH2. Additionally, the gas-phase products were identified and quantified, when possible, by FTIR spectroscopy or GC-MS. The main reaction product was reported to be CxF2x+1C(O)CH2Cl. The fluorinated species, CxF2x+1CHO and CxF2x+1C(O)CH2Cl, were identified. CF3C(O)CH2Cl and CF3CHO were found to be formed with molar yield of (69 ± 5)% and (9 ± 1)%, respectively. The global lifetime of the investigated CxF2x+1CHCH2 due to their Cl-reaction is more than 100 days so this route does not compete with the removal by OH radicals. This lifetime is long enough for CxF2x+1CHCH2 to be transported to remote areas where they can be degraded. However, at a local scale, in marine regions at dawn the removal of CxF2x+1CHCH2 is expected to occur in ca. 1 day. The atmospheric degradation of these hydrofluoroolefins by Cl atoms is not expected to be a source of bioaccumulative perfluorinated carboxylic acids, CxF2x+1C(O)OH. Additionally, the UV absorption cross sections of CF3C(O)CH2Cl were determined together with the rate coefficient of the OH reaction by an absolute kinetic method at room temperature.


Subject(s)
Air Pollutants/chemistry , Atmosphere/chemistry , Chlorine/chemistry , Hydrocarbons, Fluorinated/chemistry , Air Pollutants/analysis , Carboxylic Acids/analysis , Carboxylic Acids/chemistry , Fluorocarbons/analysis , Fluorocarbons/chemistry , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Fluorinated/analysis , Hydroxyl Radical/chemistry , Kinetics , Spectroscopy, Fourier Transform Infrared
8.
Environ Sci Technol ; 50(3): 1234-42, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26704369

ABSTRACT

The assessment of the atmospheric impact of the potential foam expansion agent, CF3(CF2)2CH═CH2 (HFC-1447fz), requires the knowledge of its degradation routes, oxidation products, and radiative properties. In this paper, the gas-phase reactivity of HFC-1447fz with OH radicals is presented as a function of temperature, obtaining kOH (T = 263-358 K) = (7.4 ± 0.4) × 10(-13)exp{(161 ± 16)/T} (cm(3)·molecule(-1)·s(-1)) (uncertainties: ±2σ). The formation of gaseous oxidation products and secondary organic aerosols (SOAs) from the OH + HFC-1447fz reaction was investigated in the presence of NOx at 298 K. CF3(CF2)2CHO was observed at low- and high-NOx conditions. Evidence of SOA formation (ultrafine particles in the range 10-100 nm) is reported with yields ranging from 0.12 to 1.79%. In addition, the absolute UV (190-368 nm) and IR (500-4000 cm(-1)) absorption cross-sections of HFC-1447fz were determined at room temperature. No appreciable absorption in the solar actinic region (λ > 290 nm) was observed, leaving the removal by OH radicals as the main atmospheric loss process for HFC-1447fz. The major contribution of the atmospheric loss of HFC-1447fz is due to OH reaction (84%), followed by ozone (10%) and chlorine atoms (6%). Correction of the instantaneous radiative efficiency (0.36 W m(-2)·ppbv(-1)) with the relatively short lifetime of HFC-1447fz (ca. 8 days) implies that its global warming potential at a time horizon of 100 year is negligible (0.19) compared to that of HCFC-141b (782) and to that of modern foam-expansion blowing agents (148, 882, and 804 for HFC-152a, HFC-245fa and HFC-365mfc, respectively).


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Hydrocarbons, Fluorinated/chemistry , Atmosphere , Biodegradation, Environmental , Chlorine , Chlorofluorocarbons, Ethane/chemistry , Environment , Global Warming , Hydroxyl Radical , Kinetics , Ozone/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature
9.
Environ Sci Pollut Res Int ; 22(7): 4806-19, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24788931

ABSTRACT

As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed mechanism for ring-retaining product channels is proposed to justify the observed reaction products. The global tropospheric lifetimes estimated from the reported OH- and Cl-rate coefficients show that the main removal path for the investigated methylcyclohexanes is the reaction with OH radicals. But in marine environments, after sunrise, Cl reactions become more important in the tropospheric degradation. Thus, the estimated lifetimes range from 16 to 24 h for the reactions of the OH radical (calculated with [OH] = 10(6) atoms cm(-3)) and around 7-8 h in the reactions with Cl atoms in marine environments (calculated with [Cl] = 1.3 × 10(5) atoms cm(-3)). The reaction of Cl atoms and OH radicals and methylcylohexanes can proceed by H abstraction from the different positions.


Subject(s)
Air Pollutants/chemistry , Chlorine/chemistry , Cyclohexanes/chemistry , Hydroxyl Radical/chemistry , Atmospheric Pressure , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Spectroscopy, Fourier Transform Infrared , Temperature
10.
Environ Sci Pollut Res Int ; 22(7): 4793-805, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25138554

ABSTRACT

CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under the assumption of a well-mixed atmosphere. Assuming other removal pathways, the atmospheric lifetime (τ) was estimated to be ∼6 days. Considering the estimated τ OH and the measured IR absorption cross sections of HFO-1243zf in the atmospheric window (720-1,250 cm(-1)), its lifetime corrected radiative efficiency was calculated to be 0.019 W m(-2) ppbv(-1). GWP100 years for the HFO investigated, 0.29, is negligible compared to that of HFC-134a, the HFC to be potentially replaced (GWP100 years = 1,300, Hodnebrog et al. (Rev Geophys 51:300-378, 2013)). ε POCP for HFO-1243zf was estimated to be around 1 order of magnitude lower than that for ethylene. In conclusion, HFO-1243zf is fast degraded in the atmosphere, and it does not appreciably contribute to global warming and local/regional air pollution. Therefore, HFO-1243zf can be a suitable replacement for HFC-134a in air conditioning units.


Subject(s)
Air Pollutants/chemistry , Hydrocarbons, Fluorinated/chemistry , Hydroxyl Radical/chemistry , Ozone/chemistry , Global Warming , Photolysis , Spectrophotometry, Infrared , Temperature
11.
J Phys Chem A ; 116(16): 4097-107, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22448964

ABSTRACT

Relative kinetic techniques have been used to measure the rate coefficients for the reactions of oxygenated terpenes (menthol, borneol, fenchol, camphor, and fenchone) and cyclohexanol with hydroxyl radicals (OH) and chlorine atoms (Cl) at 298 ± 2 K and atmospheric pressure. The rate coefficients obtained for the reactions of the title compounds with OH are the following (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.48 ± 0.31), (2.65 ± 0.32), (2.49 ± 0.30), (0.38 ± 0.08), (0.39 ± 0.09) for menthol, borneol, fenchol, camphor, and fenchone, respectively. For the corresponding reactions with Cl atoms the rate coefficients are as follows (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.21 ± 0.26), (3.40 ± 0.28), (2.72 ± 0.13), (2.93 ± 0.17), (1.59 ± 0.10), and (1.86 ± 0.29) for cyclohexanol, menthol, borneol, fenchol, camphor, and fenchone, respectively. The reported error is twice the standard deviation. Product studies of the reactions were performed using multipass in situ FTIR (Fourier transform infrared spectroscopy) and solid-phase microextraction (SPME) with analysis by GC-MS (gas chromatography-mass spectrometry). A detailed mechanism is proposed to justify the observed reaction products.


Subject(s)
Camphanes/chemistry , Camphor/chemistry , Hydroxyl Radical/chemistry , Menthol/chemistry , Norbornanes/chemistry , Chlorine/chemistry , Cyclohexanols/chemistry , Gas Chromatography-Mass Spectrometry , Kinetics , Pressure , Solid Phase Microextraction
12.
J Phys Chem A ; 116(24): 6041-50, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22268487

ABSTRACT

Fluorinated alcohols, such as 2,2,3,3-tetrafluoropropanol (TFPO, CHF(2)CF(2)CH(2)OH) and 2,2,3,3,3-pentafluoropropanol (PFPO, CF(3)CF(2)CH(2)OH), can be potential replacements of hydrofluorocarbons with large global warming potentials, GWPs. IR absorption cross sections for TFPO and PFPO were determined between 4000 and 500 cm(-1) at 298 K. Integrated absorption cross sections (S(int), base e) in the 4000-600 cm(-1) range are (1.92 ± 0.34) × 10(-16) cm(2) molecule(-1) cm(-1) and (2.05 ± 0.50) × 10(-16) cm(2) molecule(-1) cm(-1) for TFPO and PFPO, respectively. Uncertainties are at a 95% confidence level. Ultraviolet absorption spectra were also recorded between 195 and 360 nm at 298 K. In the actinic region (λ > 290 nm), an upper limit of 10(-23) cm(2) molecule(-1) for the absorption cross sections (σ(λ)) was reported. Photolysis in the troposphere is therefore expected to be a negligible loss for these fluoropropanols. In addition, absolute rate coefficients for the reaction of OH radicals with CHF(2)CF(2)CH(2)OH (k(1)) and CF(3)CF(2)CH(2)OH (k(2)) were determined as a function of temperature (T = 263-358 K) by the pulsed laser photolysis/laser induced fluorescence (PLP-LIF) technique. At room temperature, the average values obtained were k(1) = (1.85 ± 0.07) × 10(-13) cm(3) molecule(-1) s(-1) and k(2) = (1.19 ± 0.03) × 10(-13) cm(3) molecule(-1) s(-1). The observed temperature dependence of k(1)(T) and k(2)(T) is described by the following expressions: (1.35 ± 0.23) × 10(-12) exp{-(605 ± 54)/T} and (1.36 ± 0.19) × 10(-12) exp{-(730 ± 43)/T} cm(3) molecule(-1) s(-1), respectively. Since photolysis of TFPO and PFPO in the actinic region is negligible, the tropospheric lifetime (τ) of these species can be approximated by the lifetime due to the homogeneous reaction with OH radicals. Global values of τ(OH) were estimated to be of 3 and 4 months for TFPO and PFPO, respectively. GWPs relative to CO(2) at a time horizon of 500 years were calculated to be 8 and 12 for TFPO and PFPO, respectively. Despite the higher GWP relative to CO(2), these species are not expected to significantly contribute to the greenhouse effect in the next decades since they are short-lived species and will not accumulate in the troposphere even as their emissions grow up.

13.
Chemphyschem ; 12(11): 2145-54, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21674746

ABSTRACT

Relative rate coefficients for the gas-phase reaction of chlorine atoms (Cl) and hydroxyl radicals (OH) with 1,8-cineole were determined by Fourier-transform infrared (FTIR) spectroscopy between 285 and 313 K at atmospheric pressure. The temperature dependence of both reactions shows simple Arrhenius behaviour which can be represented by the following expressions (in units of cm(3) molecule(-1) s(-1)): k(1,8-cineole+OH)=(6.28 ± 6.53) × 10(-8) exp[(-2549.3 ± 155.7)/T] and k(1,8-cineole+Cl)=(1.35 ± 1.07) × 10(-10) exp[(-151.6 ± 237.7)/T]. Major products of the titled reactions were identified by solid-phase microextraction (SPME) coupled to a GC-MS. Additionally, the first step of the reaction was theoretically studied by ab initio calculations and a reaction mechanism is proposed.


Subject(s)
Cyclohexanols/chemistry , Monoterpenes/chemistry , Atmospheric Pressure , Chlorine/chemistry , Eucalyptol , Gases/chemistry , Hydroxyl Radical/chemistry , Kinetics , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics
14.
Chemphyschem ; 11(18): 4079-87, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-20853386

ABSTRACT

A comprehensive study of several atmospheric degradation routes for two hydrofluoroalcohols, CF(3)(CH(2))(x=1,2)CH(2)OH, is presented. The gas-phase kinetics of their reactions with hydroxyl radicals (OH) and chlorine (Cl) atoms are investigated by absolute and relative techniques, respectively. The room-temperature rate coefficients (±σ, in cm(3) molecule(-1) s(-1)) k(OH) and k(Cl), are respectively (9.7±1.1)×10(-13) and (1.60±0.45)×10(-11) for CF(3)CH(2)CH(2)OH, and (2.62±0.32)×10(-12) and (8.71±0.24)×10(-11) for CF(3)(CH(2))(2)CH(2)OH. Average lifetimes of CF(3)CH(2)CH(2)OH and CF(3)(CH(2))(2)CH(2)OH due to the OH and Cl reactions are estimated to be 12 and 4 days, and greater than 20 and 4 years, respectively. Also, the IR and UV absorption cross sections of CF(3)(CH(2))(x=1,2)CH(2)OH are determined in the spectral ranges of 500-4000 cm(-1) and 200-310 nm. Photolysis of CF(3)(CH(2))(x=1,2)CH(2)OH in the actinic region (λ≥290 nm) is negligible compared to their homogeneous removal. Additionally, computational IR spectra are consistent with the experimental ones, thus giving high confidence in the obtained results. The lifetimes of CF(3)(CH(2))(x=1,2)CH(2)OH and IR spectra reported herein allow the calculation of the direct global warming potential of these hydrofluoroalcohols. The contribution of CF(3)(CH(2))(x)CH(2)OH to radiative forcing of climate change will be negligible.

15.
Phys Chem Chem Phys ; 9(10): 1210-8, 2007 Mar 14.
Article in English | MEDLINE | ID: mdl-17325767

ABSTRACT

A newly constructed chamber/Fourier transform infrared system was used to determine the relative rate coefficient, k(i), for the gas-phase reaction of Cl atoms with 2-butanol (k(1)), 2-methyl-2-butanol (k(2)), 3-methyl-2-butanol (k(3)), 2,3-dimethyl-2-butanol (k(4)) and 2-pentanol (k(5)). Experiments were performed at (298 +/- 2) K, in 740 Torr total pressure of synthetic air, and the measured rate coefficients were, in cm(3) molecule(-1) s(-1) units (+/-2sigma): k(1)=(1.32 +/- 0.14) x 10(-10), k(2)=(7.0 +/- 2.2) x 10(-11), k(3)=(1.17 +/- 0.14) x 10(-10), k(4)=(1.03 +/- 0.17) x 10(-10) and k(5)=(2.18 +/- 0.36) x 10(-10), respectively. Also, all the above rate coefficients (except for 2-pentanol) were investigated as a function of temperature (267-384 K) by pulsed laser photolysis-resonance fluorescence (PLP-RF). The obtained kinetic data were used to derive the Arrhenius expressions: k(1)(T)=(6.16 +/- 0.58) x 10(-11)exp[(174 +/- 58)/T], k(2)(T)=(2.48 +/- 0.17) x 10(-11)exp[(328 +/- 42)/T], k(3)(T)=(6.29 +/- 0.57) x 10(-11)exp[(192 +/- 56)/T], and k(4)(T)=(4.80 +/- 0.43) x 10(-11)exp[(221 +/- 56)/T](in units of cm(3) molecule(-1) s(-1) and +/-sigma). Results and mechanism are discussed and compared with the reported reactivity with OH radicals. Some atmospheric implications derived from this study are also reported.

16.
J Phys Chem A ; 109(48): 10903-9, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16331934

ABSTRACT

The absolute rate coefficients for the reactions of hydroxyl radical (OH) with 2-butanol (k(1)), 2-methyl-2-butanol (k(2)), and 2,3-dimethyl-2-butanol (k(3)) were measured as a function of temperature (263-354 K) and pressure (41-193 Torr of He, Ar, and N(2)) by the pulsed laser photolysis/laser-induced fluorescence technique. This work represents the first absolute determination of k(1)(-)k(3) and their temperature dependence. No pressure dependence of the rate coefficients was observed in the range studied. Thus, k(i)(298 K) values (x10(-12) cm(3) molecule(-1) s(-1) with an uncertainty of +/-2sigma) were averaged over the pressure range studied yielding 8.77 +/- 1.46, 3.64 +/- 0.60, and 9.01 +/- 1.00 for 2-butanol (k(1)), 2-methyl-2-butanol (k(2)), and 2,3-dimethyl-2-butanol (k(3)), respectively. k(1) and k(3) exhibit a slightly negative temperature dependence over the temperature range studied. In contrast, the rate coefficient for the reaction of OH with 2-methyl-2-butanol (k(2)) did not show any temperature dependence. Some deviation of the conventional Arrhenius behavior was clearly observed for k(3). In this case, the best fit to our data was found to be described by the three-parameter expression k(T) = A + B exp(-C/T). The UV absorption cross sections of 2-butanol, 2-methyl-2-butanol, and 2,3-dimethyl-2-butanol have also been measured at room temperature between 208 and 230 nm. The values reported constitute the first determination of the UV cross sections of those alcohols. Our results are compared with previous studies, when possible, and are discussed in terms of the H-abstraction by OH radicals. The atmospheric implications of these reactions and the photochemistry of these alcohols are also discussed.

17.
Environ Sci Technol ; 39(3): 814-20, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15757344

ABSTRACT

The absolute rate coefficients for the tropospheric reactions of hydroxyl radical (OH) with a series of linear aliphatic ketones (2-butanone (k1), 2-pentanone (k2), 2-hexanone (k3), and 2-heptanone (k4)) were measured as a function of temperature (228-405 K) and pressure (45-600 Torr of He) by the pulsed laser photolysis/laser induced fluorescence technique. These studies are essential to model the atmospheric chemistry of these ketones and their impact in the air quality. No pressure dependence of the rate coefficients was observed in the range studied. Thus, k1(298 K) (x10(-12) cm3 molecule(-1) s(-1)) were averaged over the pressure range studied yielding the following: (1.04+/-0.74), (3.14+/-0.40), (6.37+/-1.40), and (8.22+/-1.10), for 2-butanone (k1), 2-pentanone (k2), 2-hexanone (k3), and 2-heptanone (k4), respectively. k1 exhibits a slightly positive temperature dependence over the temperature range studied. A conventional Arrhenius expression describes the observed behavior. In contrast, the temperature dependence of k2-k4 shows a distinct deviation from the Arrhenius behavior. The best fit to our data was found to be described by the three-parameter expression: k(T) = A + B exp(-C/T) in cm3 molecule(-1) s(-1). This work constitutes the first determination of the temperature dependence of k2-k4. Our results are compared with previous studies, when possible, and are discussed in terms of the H-abstraction by OH radicals. The atmospheric implications of these reactions are also discussed.


Subject(s)
Air Pollutants/analysis , Hydroxyl Radical/chemistry , Ketones/chemistry , Models, Theoretical , Oxidants/chemistry , Atmosphere , Photolysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...