Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Biomedicines ; 11(5)2023 May 13.
Article in English | MEDLINE | ID: mdl-37239109

ABSTRACT

Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf p.Y1159X/p.Y1159X, displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.

2.
Front Cell Dev Biol ; 9: 754555, 2021.
Article in English | MEDLINE | ID: mdl-34888307

ABSTRACT

Dysferlinopathies are a group of muscular dystrophies caused by recessive mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is a transmembrane protein involved in several muscle functions like T-tubule maintenance and membrane repair. In 2009, a study showed the existence of fourteen dysferlin transcripts generated from alternative splicing. We were interested in dysferlin transcripts containing the exon 40a, and among them the transcript 11 which contains all the canonical exons and exon 40a. This alternative exon encodes a protein region that is cleaved by calpains during the muscle membrane repair mechanism. Firstly, we tested the impact of mutations in exon 40a on its cleavability by calpains. We showed that the peptide encoded by the exon 40a domain is resistant to mutations and that calpains cleaved dysferlin in the first part of DYSF exon 40a. To further explore the implication of this transcript in cell functions, we performed membrane repair, osmotic shock, and transferrin assay. Our results indicated that dysferlin transcript 11 is a key factor in the membrane repair process. Moreover, dysferlin transcript 11 participates in other cell functions such as membrane protection and vesicle trafficking. These results support the need to restore the dysferlin transcript containing the alternative exon 40a in patients affected with dysferlinopathy.

3.
Med Sci (Paris) ; 36(4): 358-366, 2020 Apr.
Article in French | MEDLINE | ID: mdl-32356712

ABSTRACT

Muscular dystrophies are a group of rare muscular disorders characterized by weakness and progressive degeneration of the muscle. They are diseases of genetic origin caused by the mutation of one or more genes involved in muscle function. Despite significant progress made in the field of biotherapies in recent years, there is as yet no curative treatment available for these diseases. Studies conducted since the discovery of the CRISPR-Cas9 genomic editing tool have nevertheless led to significant and promising advances in the treatment of muscular dystrophies. CRISPR-Cas9 system allows a stable and permanent edition of the genome and should make it possible to avoid long, partially efficient and repetitive treatments. In this review, we will discuss the latest therapeutic advances obtained using the CRISPR-Cas9 system in genetic muscular dystrophies.


TITLE: CRISP(R)ation musculaire. ABSTRACT: Les dystrophies musculaires sont un ensemble de pathologies musculaires rares, caractérisées par une faiblesse et une dégénérescence progressive du muscle. Ce sont des maladies d'origine génétique causées par la mutation d'un ou de plusieurs gènes impliqués dans les fonctions musculaires. Malgré des progrès significatifs réalisés dans le champ des biothérapies au cours des dernières années, il n'existe pas, à ce jour, de traitement curatif disponible pour ces pathologies. Les études menées depuis la découverte de l'outil d'édition génomique CRISPR-Cas9 ont néanmoins permis des avancées significatives et prometteuses dans le traitement des dystrophies musculaires. Le système CRISPR-Cas9 permet une édition stable et permanente du génome et doit permettre d'éviter les traitements longs et répétitifs. Dans cette revue, nous aborderons les dernières avancées thérapeutiques utilisant le système CRISPR-Cas9 dans le cadre des dystrophies musculaires d'origine génétique.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Therapy , Muscular Dystrophies/genetics , Muscular Dystrophies/therapy , Animals , Gene Editing/methods , Gene Editing/trends , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Therapies, Investigational/methods , Therapies, Investigational/trends
SELECTION OF CITATIONS
SEARCH DETAIL