Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-37961136

ABSTRACT

Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies (Abs) can efficiently block parasite transmission. In search for naturally acquired Ab targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gamete and gametocyte extract. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for PfCSP, extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf . Impact Statement: A naturally acquired human monoclonal antibody recognizes proteins expressed at different stages of the Plasmodium falciparum lifecycle through affinity-matured homotypic interactions with glutamate-rich repeats.

2.
Front Immunol ; 14: 1151731, 2023.
Article in English | MEDLINE | ID: mdl-37180096

ABSTRACT

Complement C1s association with the pathogenesis of several diseases cannot be simply explained only by considering its main role in activating the classical complement pathway. This suggests that non-canonical functions are to be deciphered for this protease. Here the focus is on C1s cleavage of HMGB1 as an auxiliary target. HMGB1 is a chromatin non-histone nuclear protein, which exerts in fact multiple functions depending on its location and its post-translational modifications. In the extracellular compartment, HMGB1 can amplify immune and inflammatory responses to danger associated molecular patterns, in health and disease. Among possible regulatory mechanisms, proteolytic processing could be highly relevant for HMGB1 functional modulation. The unique properties of HMGB1 cleavage by C1s are analyzed in details. For example, C1s cannot cleave the HMGB1 A-box fragment, which has been described in the literature as an inhibitor/antagonist of HMGB1. By mass spectrometry, C1s cleavage was experimentally identified to occur after lysine on position 65, 128 and 172 in HMGB1. Compared to previously identified C1s cleavage sites, the ones identified here are uncommon, and their analysis suggests that local conformational changes are required before cleavage at certain positions. This is in line with the observation that HMGB1 cleavage by C1s is far slower when compared to human neutrophil elastase. Recombinant expression of cleavage fragments and site-directed mutagenesis were used to confirm these results and to explore how the output of C1s cleavage on HMGB1 is finely modulated by the molecular environment. Furthermore, knowing the antagonist effect of the isolated recombinant A-box subdomain in several pathophysiological contexts, we wondered if C1s cleavage could generate natural antagonist fragments. As a functional readout, IL-6 secretion following moderate LPS activation of RAW264.7 macrophage was investigated, using LPS alone or in complex with HMGB1 or some recombinant fragments. This study revealed that a N-terminal fragment released by C1s cleavage bears stronger antagonist properties as compared to the A-box, which was not expected. We discuss how this fragment could provide a potent brake for the inflammatory process, opening the way to dampen inflammation.


Subject(s)
Complement C1s , HMGB1 Protein , Humans , Complement C4/metabolism , Lipopolysaccharides , Anti-Inflammatory Agents
3.
Front Bioeng Biotechnol ; 10: 816275, 2022.
Article in English | MEDLINE | ID: mdl-35685087

ABSTRACT

Immunoglobulins type-M (IgMs) are one of the first antibody classes mobilized during immune responses against pathogens and tumor cells. Binding to specific target antigens enables the interaction with the C1 complex which strongly activates the classical complement pathway. This biological function is the basis for the huge therapeutic potential of IgMs. But, due to their high oligomeric complexity, in vitro production, biochemical characterization, and biophysical characterization are challenging. In this study, we present recombinant production of two IgM models (IgM617 and IgM012) in pentameric and hexameric states and the evaluation of their polymer distribution using different biophysical methods (analytical ultracentrifugation, size exclusion chromatography coupled to multi-angle laser light scattering, mass photometry, and transmission electron microscopy). Each IgM construct is defined by a specific expression and purification pattern with different sample quality. Nevertheless, both purified IgMs were able to activate complement in a C1q-dependent manner. More importantly, BioLayer Interferometry (BLI) was used for characterizing the kinetics of C1q binding to recombinant IgMs. We show that recombinant IgMs possess similar C1q-binding properties as IgMs purified from human plasma.

4.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233549

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Liposomes , Macaca fascicularis , Male , Pandemics/prevention & control , Th1 Cells/immunology , Treatment Outcome , Vaccines, Virus-Like Particle/immunology , Vero Cells
5.
Mol Ther ; 30(5): 1913-1925, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35151843

ABSTRACT

Virus-like particles (VLPs) are highly suited platforms for protein-based vaccines. In the present work, we adapted a previously designed non-infectious adenovirus-inspired 60-mer dodecahedric VLP (ADDomer) to display a multimeric array of large antigens through a SpyTag/SpyCatcher system. To validate the platform as a potential COVID-19 vaccine approach, we decorated the newly designed VLP with the glycosylated receptor binding domain (RBD) of SARS-CoV-2. Cryoelectron microscopy structure revealed that up to 60 copies of this antigenic domain could be bound on a single ADDomer particle, with the symmetrical arrangements of a dodecahedron. Mouse immunization with the RBD decorated VLPs already showed a significant specific humoral response following prime vaccination, greatly reinforced by a single boost. Neutralization assays with SARS-CoV-2 spike pseudo-typed virus demonstrated the elicitation of strong neutralization titers, superior to those of COVID-19 convalescent patients. Notably, the presence of pre-existing immunity against the adenoviral-derived particles did not hamper the immune response against the antigen displayed on its surface. This plug and play vaccine platform represents a promising new highly versatile tool to combat emergent pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cryoelectron Microscopy , Humans , Mice , Vaccination
6.
Sci Rep ; 11(1): 14867, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290262

ABSTRACT

SARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed.


Subject(s)
COVID-19/virology , Lipid Bilayers/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/physiopathology , Cell Line , Humans , Membrane Fusion/physiology , Neutron Diffraction/methods , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
7.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066122

ABSTRACT

The immune system homeostasis relies on a tight equilibrium of interconnected stimulatory and inhibitory signals. Disruption of this balance is characteristic of autoimmune diseases such as systemic lupus erythematosus (SLE). Aside from activating the classical complement pathway and enhancing pathogens and apoptotic cells phagocytosis, C1q has been recently shown to play an important role in immune modulation and tolerance by interacting with several inhibitory and stimulatory immune receptors. Due to its functional organization into collagen-like (CLR) and globular (GR) regions and its multimeric nature, C1q is able to interact simultaneously with several of these receptors and locally congregate pro- and anti-inflammatory signals, thus modulating the immune response. Leukocyte associated immunoglobulin-like (Ig-like) receptor 1 (LAIR-1), a ubiquitous collagen receptor expressed in many immune cell types, has been reported to interact with the CLR of C1q. In this study, we provide new insights into the molecular and structural determinants underlying C1q/LAIR-1 interaction. Recombinant LAIR-1 extracellular Ig-like domain was produced and tested for its interaction with C1q. A molecular dissection of C1q combined with competition assays reveals that LAIR-1 interacts with C1q's CLR through a binding site close but different from the one of its associated C1r2s2 proteases tetramer. On the other side, we identified LAIR-1 residues involved in C1q interaction by site-directed mutational analysis. All together, these results lead to propose a possible model for C1q interaction with LAIR-1 and will contribute to the fundamental understanding of C1q-mediated immune tolerance.


Subject(s)
Collagen/metabolism , Complement C1q/metabolism , Receptors, Immunologic/metabolism , Binding Sites , Complement C1q/genetics , Humans , Immune Tolerance , Mutation , Protein Binding , Receptors, Immunologic/genetics
8.
PLoS Pathog ; 17(5): e1009576, 2021 05.
Article in English | MEDLINE | ID: mdl-34015061

ABSTRACT

The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.


Subject(s)
COVID-19/transmission , Lectins, C-Type/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antigens, CD/metabolism , COVID-19/prevention & control , Cell Adhesion Molecules/metabolism , Cell Line , Chlorocebus aethiops , Humans , Jurkat Cells , Lung/metabolism , Mannose-Binding Lectins/metabolism , Mannosides/pharmacology , Protein Binding/drug effects , Receptors, Cell Surface/metabolism , Respiratory Mucosa/metabolism , Vero Cells
9.
J Immunol Methods ; 492: 113001, 2021 05.
Article in English | MEDLINE | ID: mdl-33621564

ABSTRACT

Complement C1q is a multifunctional protein able to sense pathogens and immune molecules such as immunoglobulins and pentraxins, and to trigger the classical complement pathway through activation of its two associated proteases, C1r and C1s. C1q is a multimeric protein composed of three homologous yet distinct polypeptide chains A, B, and C, each composed of an N-terminal collagen-like sequence and a C-terminal globular gC1q module, that assemble into six heterotrimeric (A-B-C) subunits. This hexameric structure exhibits the characteristic shape of a bouquet of flowers, comprising six collagen-like triple helices, each terminating in a trimeric C-terminal globular head. We have produced previously functional recombinant full-length C1q in stably transfected HEK 293-F cells, with a FLAG tag inserted at the C-terminal end of C1qC chain. We report here the generation of additional recombinant C1q proteins, with a FLAG tag fused to the C-terminus of C1qA or C1qB chains, or to the N-terminus of the C1qC chain. Two other variants harboring a Myc or a 6-His tag at the C-terminal end of C1qC were also produced. We show that all C1q variants, except for the His-tagged protein, can be produced at comparable yields and are able to bind with similar affinities to either IgM, a ligand of the globular regions, or to the C1r2-C1s2 tetramer, and to trigger IgM-mediated serum complement activation. These new recombinant C1q variants provide additional tools to investigate the multiple functions of C1q.


Subject(s)
Complement C1q/isolation & purification , Molecular Probes/genetics , Amino Acid Sequence , Complement Activation , Complement C1q/genetics , Complement C1q/metabolism , HEK293 Cells , Humans , Immunoassay/methods , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transfection
10.
FEBS J ; 288(6): 2030-2041, 2021 03.
Article in English | MEDLINE | ID: mdl-32869492

ABSTRACT

Complement component C1q, a soluble defense collagen, is the recognition protein of the classical complement pathway. C1q is able to recognize and interact with multiple targets and, via the subsequent activation of its cognate serine proteases C1r and C1s, initiates the complement cascade. C1q is made up of six ABC heterotrimers each containing two different functional regions, an N-terminal collagen-like region (CLR) and a C-terminal globular region (GR). These heterotrimers assemble via their N-terminal regions, resulting in the characteristic 'bouquet-like' shape of C1q with an N-terminal bundle of collagen fibers with six diverging stems each exhibiting a C-terminal globular head. The GRs are responsible for the versatile recognition of multiple C1q targets, whereas the CLRs trigger immune response through interacting with several cellular or soluble partners. We report here the generation of the first recombinant form of human C1q without its recognition globular heads. The noncollagenous domain 2 (nc2) of type IX collagen has been substituted for the C1q GR in order to control the correct registering of the collagen triple helices of C1q chains A, B, and C. The resulting CLR_nc2 recombinant protein produced in stably transfected EXPI293 mammalian cells was correctly assembled and folded, as demonstrated by mass spectrometry, mass photometry, and electron microscopy experiments. Its interaction properties were investigated using surface plasmon resonance analysis with known CLR ligands: the tetramer of C1r and C1s dimers and MBL-associated protein MAp44. Comparison with the interaction properties of native serum-derived C1q and CLR revealed that recombinant CLR_nc2 retains C1q CLR functional properties.


Subject(s)
Complement C1q/chemistry , Protein Domains , Protein Multimerization , Recombinant Proteins/chemistry , Amino Acid Sequence , Collagen/chemistry , Collagen/genetics , Collagen/metabolism , Complement Activation/genetics , Complement C1q/genetics , Complement C1q/metabolism , Humans , Ligands , Mass Spectrometry , Microscopy, Electron , Mutation, Missense , Photometry , Protein Binding , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Surface Plasmon Resonance
11.
Front Immunol ; 11: 583754, 2020.
Article in English | MEDLINE | ID: mdl-33193398

ABSTRACT

LRP1 is a large endocytic modular receptor that plays a crucial role in the scavenging of apoptotic material through binding to pattern-recognition molecules. It is a membrane anchored receptor of the LDL receptor family with 4 extracellular clusters of ligand binding modules called cysteine rich complement-type repeats that are involved in the interaction of LRP1 with its numerous ligands. Complement C1q was shown to interact with LRP1 and to be implicated in the phagocytosis of apoptotic cells. The present work aimed at exploring how these two large molecules interact at the molecular level using a dissection strategy. For that purpose, recombinant LRP1 clusters II, III and IV were produced in mammalian HEK293F cells and their binding properties were investigated. Clusters II and IV were found to interact specifically and efficiently with C1q with K Ds in the nanomolar range. The use of truncated C1q fragments and recombinant mutated C1q allowed to localize more precisely the binding site for LRP1 on the collagen-like regions of C1q (CLRs), nearby the site that is implicated in the interaction with the cognate protease tetramer C1r2s2. This site could be a common anchorage for other ligands of C1q CLRs such as sulfated proteoglycans and Complement receptor type 1. The use of a cellular model, consisting in CHO LRP1-null cells transfected with full-length LRP1 or a cluster IV minireceptor (mini IV) confirmed that mini IV interacts with C1q at the cell membrane as well as full-length LRP1. Further cellular interaction studies finally highlighted that mini IV can endorse the full-length LRP1 binding efficiency for apoptotic cells and that C1q has no impact on this interaction.


Subject(s)
Complement C1q/metabolism , Complement C1r/metabolism , Complement C1s/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Peptide Hydrolases/metabolism , Animals , Apoptosis/physiology , Binding Sites/physiology , CHO Cells , Cell Line , Cell Membrane/metabolism , Cricetulus , HEK293 Cells , Humans , Ligands , Protein Domains/physiology
12.
Front Immunol ; 11: 544, 2020.
Article in English | MEDLINE | ID: mdl-32296440

ABSTRACT

The scavenger receptor SR-F1 binds to and mediates the internalization of a wide range of ligands, and is involved in several immunological processes. We produced recombinant SR-F1 ectodomain and fragments deleted from the last 2 or 5 C-terminal epidermal growth factor-like modules and investigated their role in the binding of acetylated low density lipoprotein (AcLDL), complement C1q, and calreticulin (CRT). C1q measured affinity was in the 100 nM range and C1q interaction occurs via its collagen-like region. We identified two different binding regions on SR-F1: the N-terminal moiety interacts with C1q and CRT whereas the C-terminal moiety binds AcLDL. The role of SR-F1 N-linked glycans was also tested by mutating each of the three glycosylated asparagines. The three mutants retained binding activities for both AcLDL and C1q. A stable THP-1 cell line overexpressing SR-F1 was generated and C1q was shown to bind more strongly to the surface of SR-F1 overexpressing macrophages, with C1q/SR-F1 colocalization observed in some membrane areas. We also observed a higher level of CRT internalization for THP-1 SR-F1 cells. Increasing SR-F1 negatively modulated the uptake of apoptotic cells. Indeed, THP-1 cells overexpressing SR-F1 displayed a lower phagocytic capacity as compared with mock-transfected cells, which could be partially restored by addition of C1q in the extracellular milieu. Our data shed some light on the role of SR-F1 in efferocytosis, through its capacity to bind C1q and CRT, two proteins involved in this process.


Subject(s)
Apoptosis/immunology , Complement C1q/immunology , Macrophages/immunology , Phagocytosis/immunology , Scavenger Receptors, Class F/immunology , Calreticulin/immunology , Cell Communication/immunology , Complement C1q/metabolism , Humans , Scavenger Receptors, Class F/metabolism , THP-1 Cells
13.
PLoS One ; 15(3): e0229992, 2020.
Article in English | MEDLINE | ID: mdl-32163462

ABSTRACT

Recombinant production of IgM antibodies poses a special challenge due to the complex structure of the proteins and their not yet fully elucidated interactions with the immune effector proteins, especially the complement system. In this study, we present transient expression of IgM antibodies (IgM617, IgM012 and IgM012_GL) in HEK cells and compared it to the well-established stable expression system in CHO cells. The presented workflow investigates quality attributes including productivity, polymer distribution, glycosylation, antibody structure and activation of the classical complement pathway. The HEK293E transient expression system is able to generate comparable amounts and polymer distribution as IgM stably produced in CHO. Although the glycan profile generated by HEK293E cells contained a lower degree of sialylation and a higher portion of oligomannose structures, the potency to activate the complement cascade was maintained. Electron microscopy also confirmed the structural integrity of IgM pentamers produced in HEK293E cells, since the conventional star-shaped structure is observed. From our studies, we conclude that the transient expression system provides an attractive alternative for rapid, efficient and high-throughput production of complex IgM antibodies with slightly altered post-translational modifications, but comparable structure and function.


Subject(s)
Immunoglobulin M/metabolism , Animals , CHO Cells , Complement Activation , Complement C1q/chemistry , Complement C1q/metabolism , Cricetinae , Cricetulus , Glycosylation , HEK293 Cells , Humans , Immunoglobulin M/chemistry , Immunoglobulin M/genetics , Microscopy, Electron, Transmission , Oligosaccharides/chemistry , Plasmids/genetics , Plasmids/metabolism , Transfection
14.
Mol Immunol ; 117: 65-72, 2020 01.
Article in English | MEDLINE | ID: mdl-31739194

ABSTRACT

Complement protein C1q plays a dual role in a number of inflammatory diseases such as atherosclerosis. While in later stages classical complement pathway activation by C1q exacerbates disease progression, C1q also plays a beneficial role in early disease. Independent of its role in complement activation, we and others have identified a number of potentially beneficial interactions of C1q with phagocytes in vitro, including triggering phagocytosis of cellular and molecular debris and polarizing macrophages toward an anti-inflammatory phenotype. These interactions may also be important in preventing autoimmunity. Here, we characterize variants of recombinant human C1q (rC1q) which no longer initiate complement activation, through mutation of the C1r2C1s2 interaction site. For insight into the structural location of the site of C1q that is important for interaction with phagocytes, we investigated the effect of these mutations on phagocytosis and macrophage inflammatory polarization, as compared to wild-type C1q. Phagocytosis of antibody coated sheep erythrocytes and oxidized LDL was measured in human monocytes and monocyte-derived macrophages (HMDM) respectively that had interacted with rC1q wild-type or variants. Secreted levels of cytokines were also measured in C1q stimulated HMDM. All variants of C1q increased phagocytosis in HMDM compared to controls, similar to native or wild-type rC1q. In addition, levels of certain pro-inflammatory cytokines and chemokines secreted by HMDM were modulated in cells that interacted with C1q variants, similar to wild-type rC1q and native C1q. This includes downregulation of IL-1α, IL-1ß, TNFα, MIP-1α, and IL-12p40 by native and rC1q in both resting and M1-polarized HMDM. This suggests that the site responsible for C1q interaction with phagocytes is independent of the C1r2C1s2 interaction site. Further studies with these classical pathway-null variants of C1q should provide greater understanding of the complement-independent role of C1q, and allow for potential therapeutic exploitation.


Subject(s)
Complement C1q/chemistry , Complement C1q/immunology , Complement Pathway, Classical/immunology , Macrophages/immunology , Phagocytosis/immunology , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
16.
Front Immunol ; 10: 2537, 2019.
Article in English | MEDLINE | ID: mdl-31749804

ABSTRACT

Heterozygous missense or in-frame insertion/deletion mutations in complement 1 subunits C1r and C1s cause periodontal Ehlers-Danlos Syndrome (pEDS), a specific EDS subtype characterized by early severe periodontal destruction and connective tissue abnormalities like easy bruising, pretibial haemosiderotic plaques, and joint hypermobility. We report extensive functional studies of 16 C1R variants associated with pEDS by in-vitro overexpression studies in HEK293T cells followed by western blot, size exclusion chromatography and surface plasmon resonance analyses. Patient-derived skin fibroblasts were analyzed by western blot and Enzyme-linked Immunosorbent Assay (ELISA). Overexpression of C1R variants in HEK293T cells revealed that none of the pEDS variants was integrated into the C1 complex but cause extracellular presence of catalytic C1r/C1s activities. Variants showed domain-specific abnormalities of intracellular processing and secretion with preservation of serine protease function in the supernatant. In contrast to C1r wild type, and with the exception of a C1R missense variant disabling a C1q binding site, pEDS variants had different impact on the cell: retention of C1r fragments inside the cell, secretion of aggregates, or a new C1r cleavage site. Overexpression of C1R variants in HEK293T as well as western blot analyses of patient fibroblasts showed decreased levels of secreted C1r. Importantly, all available patient fibroblasts exhibited activated C1s and activation of externally added C4 in the supernatant while control cell lines secreted proenzyme C1s and showed no increase in C4 activation. The central elements in the pathogenesis of pEDS seem to be the intracellular activation of C1r and/or C1s, and extracellular presence of activated C1s that independently of microbial triggers can activate the classical complement cascade.


Subject(s)
Complement C1/immunology , Complement C1r/immunology , Ehlers-Danlos Syndrome/immunology , Periodontal Diseases/immunology , Cells, Cultured , Complement Activation , Complement C1r/genetics , Ehlers-Danlos Syndrome/genetics , Fibroblasts/immunology , Humans , Mutation , Periodontal Diseases/genetics
17.
Front Immunol ; 10: 461, 2019.
Article in English | MEDLINE | ID: mdl-30923526

ABSTRACT

Pentraxins and complement defense collagens are soluble recognition proteins that sense pathogens and altered-self elements, and trigger immune responses including complement activation. PTX3 has been shown to interact with the globular recognition domains (gC1q) of the C1q protein of the classical complement pathway, thereby modulating complement activity. The C1q-PTX3 interaction has been characterized previously by site-specific mutagenesis using individual gC1q domains of each of the three C1q chains. The present study is aimed at revisiting this knowledge taking advantage of full-length recombinant C1q. Four mutations targeting exposed amino acid residues in the gC1q domain of each of the C1q chains (LysA200Asp-LysA201Asp, ArgB108Asp-ArgB109Glu, TyrB175Leu, and LysC170Glu) were introduced in recombinant C1q and the interaction properties of the mutants were analyzed using surface plasmon resonance. All C1q mutants retained binding to C1r and C1s proteases and mannose-binding lectin-associated serine proteases, indicating that the mutations did not affect the function of the collagen-like regions of C1q. The effect of these mutations on the interaction of C1q with PTX3 and IgM, and both the PTX3- and IgM-mediated activation of the classical complement pathway were investigated. The LysA200Asp-LysA201Asp and LysC170Glu mutants retained partial interaction with PTX3 and IgM, however they triggered efficient complement activation. In contrast, the ArgB108Asp-ArgB109Glu mutation abolished C1q binding to PTX3 and IgM, and significantly decreased complement activation. The TyrB175Leu mutant exhibited decreased PTX3- and IgM-dependent complement activation. Therefore, we provided evidence that, in the context of the full length C1q protein, a key contribution to the interaction with both PTX3 and IgM is given by the B chain Arg residues that line the side of the gC1q heterotrimer, with a minor participation of a Lys residue located at the apex of gC1q. Furthermore, we generated recombinant forms of the human PTX3 protein bearing either D or A at position 48, a polymorphic site of clinical relevance in a number of infections, and observed that both allelic variants equally recognized C1q.


Subject(s)
C-Reactive Protein/chemistry , Complement C1q/chemistry , Immunoglobulin M/chemistry , Mutation, Missense , Serum Amyloid P-Component/chemistry , Amino Acid Substitution , Animals , C-Reactive Protein/genetics , C-Reactive Protein/immunology , CHO Cells , Complement C1q/genetics , Complement C1q/immunology , Cricetulus , Humans , Immunoglobulin M/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Serum Amyloid P-Component/genetics , Serum Amyloid P-Component/immunology
18.
Front Immunol ; 10: 2962, 2019.
Article in English | MEDLINE | ID: mdl-31921203

ABSTRACT

Ehlers-Danlos syndromes (EDS) are clinically and genetically heterogeneous disorders characterized by soft connective tissue alteration like joint hypermobility and skin hyper-extensibility. We previously identified heterozygous missense mutations in the C1R and C1S genes, coding for the complement C1 proteases, in patients affected by periodontal EDS, a specific EDS subtype hallmarked by early severe periodontitis leading to premature loss of teeth and connective tissue alterations. Up to now, there is no clear molecular link relating the nominal role of the C1r and C1s proteases, which is to activate the classical complement pathway, to these heterogeneous symptoms of periodontal EDS syndrome. We aim therefore to elucidate the functional effect of these mutations, at the molecular and enzymatic levels. To explore the molecular consequences, a set of cell transfection experiments, recombinant protein purification, mass spectroscopy and N-terminal analyses have been performed. Focusing on the results obtained on two different C1S variants, namely p.Val316del and p.Cys294Arg, we show that HEK293-F cells stably transfected with the corresponding C1s variant plasmids, unexpectedly, do not secrete the full-length mutated C1s, but only a truncated Fg40 fragment of 40 kDa, produced at very low levels. Detailed analyses of the Fg40 fragments purified for the two C1s variants show that they are identical, which was also unexpected. This suggests that local misfolding of the CCP1 module containing the patient mutation exposes a novel cleavage site, between Lys353 and Cys354, which is not normally accessible. The mutation-induced Fg40 fragment contains the intact C-terminal serine protease domain but not the N-terminal domain mediating C1s interaction with the other C1 subunits, C1r, and C1q. Thus, Fg40 enzymatic activity escapes the normal physiological control of C1s activity within C1, potentially providing a loss-of-control. Comparative enzymatic analyses show that Fg40 retains the native esterolytic activity of C1s, as well as its cleavage efficiency toward the ancillary alarmin HMGB1 substrate, for example, whereas the nominal complement C4 activation cleavage is impaired. These new results open the way to further molecular explorations possibly involving subsidiary C1s targets.


Subject(s)
Complement C1r , Complement C1s , Ehlers-Danlos Syndrome , Mutation, Missense , Periodontal Diseases , Amino Acid Substitution , Complement C1r/genetics , Complement C1r/immunology , Complement C1s/genetics , Complement C1s/immunology , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/immunology , Ehlers-Danlos Syndrome/pathology , HEK293 Cells , Humans , Periodontal Diseases/genetics , Periodontal Diseases/immunology , Periodontal Diseases/pathology , Protein Folding
19.
Science ; 360(6388): 558-563, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29724957

ABSTRACT

Deficiency of C1q, the initiator of the complement classical pathway, is associated with the development of systemic lupus erythematosus (SLE). Explaining this association in terms of abnormalities in the classical pathway alone remains problematic because C3 deficiency does not predispose to SLE. Here, using a mouse model of SLE, we demonstrate that C1q, but not C3, restrains the response to self-antigens by modulating the mitochondrial metabolism of CD8+ T cells, which can themselves propagate autoimmunity. C1q deficiency also triggers an exuberant effector CD8+ T cell response to chronic viral infection leading to lethal immunopathology. These data establish a link between C1q and CD8+ T cell metabolism and may explain how C1q protects against lupus, with implications for the role of viral infections in the perpetuation of autoimmunity.


Subject(s)
Autoimmunity/immunology , CD8-Positive T-Lymphocytes/metabolism , Complement C1q/physiology , Lupus Erythematosus, Systemic/immunology , Lymphocytic Choriomeningitis/immunology , Animals , Autoantibodies/immunology , Autoimmunity/genetics , Complement C1q/genetics , Complement C3/genetics , Complement C3/physiology , Complement Pathway, Classical/genetics , Complement Pathway, Classical/immunology , Disease Models, Animal , Immunoglobulins/immunology , Immunologic Memory/immunology , Lupus Erythematosus, Systemic/genetics , Lymphocytic Choriomeningitis/genetics , Mice , Mice, Mutant Strains
20.
Front Immunol ; 9: 453, 2018.
Article in English | MEDLINE | ID: mdl-29563915

ABSTRACT

Complement receptor type 1 (CR1) is a multi modular membrane receptor composed of 30 homologous complement control protein modules (CCP) organized in four different functional regions called long homologous repeats (LHR A, B, C, and D). CR1 is a receptor for complement-opsonins C3b and C4b and specifically interacts through pairs of CCP modules located in LHR A, B, and C. Defense collagens such as mannose-binding lectin (MBL), ficolin-2, and C1q also act as opsonins and are involved in immune clearance through binding to the LHR-D region of CR1. Our previous results using deletion variants of CR1 mapped the interaction site for MBL and ficolin-2 on CCP24-25. The present work aimed at deciphering the interaction of C1q with CR1 using new CR1 variants concentrated around CCP24-25. CR1 bimodular fragment CCP24-25 and CR1 CCP22-30 deleted from CCP24-25 produced in eukaryotic cells enabled to highlight that the interaction site for both MBL and C1q is located on the same pair of modules CCP24-25. C1q binding to CR1 shares with MBL a main common interaction site on the collagen stalks but also subsidiary sites most probably located on C1q globular heads, contrarily to MBL.


Subject(s)
Complement C1q/chemistry , Mannose-Binding Lectin/chemistry , Peptides/chemistry , Receptors, Complement 3b/chemistry , Complement C1q/genetics , Complement C1q/immunology , Humans , Lectins/chemistry , Lectins/genetics , Lectins/immunology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Peptides/genetics , Peptides/immunology , Protein Binding , Protein Domains , Protein Structure, Secondary , Receptors, Complement 3b/genetics , Receptors, Complement 3b/immunology , Ficolins
SELECTION OF CITATIONS
SEARCH DETAIL
...