Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(3): e0229943, 2020.
Article in English | MEDLINE | ID: mdl-32142527

ABSTRACT

Cassava (Manihot esculenta Crantz) is an important food security crop in many parts of the developing world. The crop's high yield potential and multitude of uses-both for nutrition and processing-render cassava a promising driver for the development of rural value chains. It is traditionally propagated from stem cuttings of up to 30 cm in length, giving a multiplication rate as low as 1:10. Propagating cassava traditionally is very inefficient, which leads to challenges in the production and distribution of quality planting material and improved cultivars, greatly limiting the impact of investments in crop breeding. The work described in the present study aimed to develop a seed treatment approach to facilitate the use of shorter seed pieces, increasing the multiplication rate of cassava and thus making the crop's seed systems more efficient. After several tests, formulation was identified, consisting of thiamethoxam 21 g ha-1, mefenoxam 1.0 g ha-1, fludioxonil 1.3 g ha-1, thiabendazole 7.5 g ha-1 and Latex 2% as a binder. Plant growing from seed pieces treated with this formulation displayed increased crop establishment and early crop vigor, leading to an improved productivity throughout a full growing cycle. This allowed to reduce the cassava seed piece size to 8 cm with no negative effects on germination and crop establishment, leading to yields comparable to those from untreated 16 cm pieces. This, in turn, will allow to increase the multiplication ratio of cassava by a factor of up to 3. Notably, this was possible under regular field conditions and independently of any specialised treatment facilities. Compared with existing seed production protocols, the increased multiplication rates allowed for efficiency gains of between 1 to 1.9 years compared to conventional five-year cycles. We believe that the technology described here holds considerable promise for developing more reliable and remunerative delivery channels for quality cassava planting material and improved genetics.


Subject(s)
Manihot/growth & development , Plant Breeding , Plant Stems/growth & development , Seeds/growth & development , Alanine/analogs & derivatives , Alanine/pharmacology , Dioxoles/pharmacology , Latex/pharmacology , Manihot/drug effects , Plant Stems/drug effects , Pyrroles/pharmacology , Seeds/drug effects , Thiabendazole/pharmacology , Thiamethoxam/pharmacology
2.
Front Plant Sci ; 9: 1221, 2018.
Article in English | MEDLINE | ID: mdl-30177948

ABSTRACT

Exposure of plants to biotic stress results in an effective induction of numerous defense mechanisms that involve a vast redistribution within both primary and secondary metabolisms. For instance, an alteration of tricarboxylic acid (TCA) levels can accompany the increase of plant resistance stimulated by various synthetic and natural inducers. Moreover, components of the TCA flux may play a role during the set-up of plant defenses. In this study, we show that citrate and fumarate, two major components of the TCA cycle, are able to induce priming in Arabidopsis against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Both citrate and fumarate show no direct antimicrobial effect and therefore enhanced bacterial resistance found in planta is solely based on the induction of the plant defense system. During the priming phase, both TCA intermediates did not induce any changes in transcript abundances of a set of defense genes, and in phytohormones and camalexin levels. However, at early time points of bacterial challenge, citrate induced a stronger salicylic acid and camalexin accumulation followed later by a boost of the jasmonic acid pathway. On the other hand, adaptations of hormonal pathways in fumarate-treated plants were more complex. While jasmonic acid was not induced, mutants impaired in jasmonic acid perception failed to mount a proper priming response induced by fumarate. Our results suggest that changes in carboxylic acid abundances can enhance Arabidopsis defense through complex signaling pathways. This highlights a promising feature of TCAs as novel defense priming agents and calls for further exploration in other pathosystems and stress situations.

3.
New Phytol ; 213(2): 552-559, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27782340

ABSTRACT

The defense system of a plant can be primed for increased defense, resulting in an augmented stress resistance and/or tolerance. Priming can be triggered by biotic and abiotic stimuli, as well as by chemicals such as ß-aminobutyric acid (BABA), a nonprotein amino acid considered so far a xenobiotic. Since the perception mechanism of BABA has been recently identified in Arabidopsis thaliana, in the present study we explored the possibility that plants do synthesize BABA. After developing a reliable method to detect and quantify BABA in plant tissues, and unequivocally separate it from its two isomers α- and γ-aminobutyric acid, we measured BABA levels in stressed and nonstressed A. thaliana plants, and in different plant species. We show that BABA is a natural product of plants and that the endogenous levels of BABA increase rapidly after infection with necrotrophic, biotrophic and hemibiotrophic pathogens, as well as after salt stress and submergence. Our results place the rise in endogenous BABA levels to a point of convergence in plant stress response and provide biological significance to the presence of a receptor in plants. These findings can explain the extremely widespread efficacy of BABA and open the way to unravel the early steps of priming.


Subject(s)
Aminobutyrates/metabolism , Plants/metabolism , Stress, Physiological , Aminobutyrates/chemistry , Chromatography, Liquid , Mass Spectrometry , Plant Leaves/metabolism , Plant Roots/metabolism , Reference Standards , Reproducibility of Results
4.
Trends Plant Sci ; 20(7): 443-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25921921

ABSTRACT

Plants can be primed to respond faster and more strongly to stress and multiple pathways, specific for the encountered challenge, are involved in priming. This adaptability of priming makes it difficult to pinpoint an exact mechanism: the same phenotypic observation might be the consequence of unrelated underlying events. Recently, details of the molecular aspects of establishing a primed state and its transfer to offspring have come to light. Advances in techniques for detection and quantification of elements spanning the fields of transcriptomics, proteomics, and metabolomics, together with adequate bioinformatics tools, will soon allow us to take a holistic approach to plant defence. This review highlights the state of the art of new strategies to study defence priming in plants and provides perspectives towards 'prime-omics'.


Subject(s)
Adaptation, Physiological , Plant Physiological Phenomena , Animals , Arthropods/immunology , Fungi/immunology , Nematoda/immunology , Oomycetes/immunology , Stress, Physiological
5.
Front Plant Sci ; 5: 295, 2014.
Article in English | MEDLINE | ID: mdl-25009546

ABSTRACT

Immune-stimulated plants are able to respond more rapidly and adequately to various biotic stresses allowing them to efficiently combat an infection. During the priming phase, plant are stimulated in absence of a challenge, and can accumulate and store conjugates or precursors of molecules as well as other compounds that play a role in defense. These molecules can be released during the defensive phase following stress. These metabolites can also participate in the first stages of the stress perception. Here, we report the metabolic changes occuring in primed plants during the priming phase. ß-aminobutyric acid (BABA) causes a boost of the primary metabolism through the tricarboxylic acids (TCA) such as citrate, fumarate, (S)-malate and 2-oxoglutarate, and the potentiation of phenylpropanoid biosynthesis and the octodecanoic pathway. On the contrary, Pseudomonas syringae pv tomato (PstAvrRpt2) represses the same pathways. Both systems used to prime plants share some common signals like the changes in the synthesis of amino acids and the production of SA and its glycosides, as well as IAA. Interestingly, a product of the purine catabolism, xanthosine, was found to accumulate following both BABA- and PstAvrRpt2-treatement. The compounds that are strongly affected in this stage are called priming compounds, since their effect on the metabolism of the plant is to induce the production of primed compounds that will help to combat the stress. At the same time, additional identified metabolites suggest the possible defense pathways that plants are using to get ready for the battle.

SELECTION OF CITATIONS
SEARCH DETAIL
...