Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Infect Dis Ther ; 12(12): 2649-2663, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048020

ABSTRACT

The global invasive meningococcal disease (IMD) landscape changed considerably during the COVID-19 pandemic, as evidenced by decreased incidence rates due to COVID-19 mitigation measures, such as limited social contact, physical distancing, mask wearing, and hand washing. Vaccination rates were also lower during the pandemic relative to pre-pandemic levels. Although policymakers may have shifted their focus away from IMD vaccination programs to COVID-19 vaccination programs, strong arguments support implementation and prioritization of IMD vaccination programs; IMD cases have increased in some countries and IMD rates may even have exceeded pre-pandemic levels. Additional concerns include increased susceptibility due to vaccination coverage gaps, increased incidence of other respiratory pathogens, immunity debt from lockdown restrictions, and increased IMD epidemiologic variability. The full range of benefits of widely available and effective meningococcal vaccines needs to be considered, especially in health technology assessments, where the broad benefits of these vaccines are neither accurately quantified nor captured in implementation policy decisions. Importantly, implementation of meningococcal vaccination programs in the current IMD climate also appeals to broader healthcare principles, including preparedness rather than reactive approaches, generally accepted benefit-risk approaches to vaccination, historical precedent, and the World Health Organization's goal of defeating meningitis by 2030. Countries should therefore act swiftly to bolster existing meningococcal vaccination strategies to provide broad coverage across age groups and serogroups given the recent increases in IMD incidence.

2.
Hum Vaccin Immunother ; 19(2): 2251825, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37679903

ABSTRACT

In response to escalating cases of serogroup W (MenW) invasive meningococcal disease (IMD), multiple countries introduced quadrivalent conjugate MenACWY vaccines into their national immunization programs (NIPs). Here, we summarize the real-world impact and vaccine effectiveness (VE) data of MenACWY-TT from Chile, England, the Netherlands, and Australia. Incidence rate reductions (IRRs) and VE from baseline to post-NIP period were extracted from publications or calculated. After the administration of a single dose of MenACWY-TT, substantial IRRs of MenCWY were observed across the countries in vaccine-eligible age groups (83%-85%) and via indirect protection in non-vaccine-eligible age groups (45%-53%). The impact of MenACWY-TT was primarily driven by MenW IRRs, as seen in vaccine-eligible age groups (65%-92%) and non-vaccine-eligible age groups (41%-57%). VE against MenW was reported in vaccine-eligible toddlers (92%) in the Netherlands and in vaccine-eligible adolescents/young adults (94%) in England. These real-world data support the implementation and continued use of MenACWY-TT in NIPs.


Subject(s)
Meningococcal Infections , Adolescent , Young Adult , Humans , Australia/epidemiology , England , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Netherlands/epidemiology , Vaccines, Combined
3.
Lancet Infect Dis ; 23(12): 1370-1382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37579773

ABSTRACT

BACKGROUND: Meningococcal serogroups A, B, C, W, and Y cause nearly all meningococcal disease, and comprehensive protection requires vaccination against all five serogroups. We aimed to assess the immunogenicity and safety of a pentavalent MenABCWY vaccine comprising two licensed vaccines-meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) and a quadrivalent meningococcal serogroup ACWY tetanus toxoid conjugate vaccine (MenACWY-TT)-compared with two doses of MenB-FHbp and a single dose of quadrivalent meningococcal serogroup ACWY CRM197-conjugate vaccine (MenACWY-CRM) as the active control. We previously reported the primary safety and immunogenicity data relating to the two-dose MenB-FHbp schedule. Here we report secondary outcomes and ad-hoc analyses relating to MenABCWY immunogenicity and safety. METHODS: We did an observer-blind, active-controlled trial at 68 sites in the USA, Czech Republic, Finland, and Poland. Healthy individuals (aged 10-25 years) who had or had not previously received a MenACWY vaccine were randomly assigned (1:2) using an interactive voice or web-based response system, stratified by previous receipt of a MenACWY vaccine, to receive 0·5 mL of MenABCWY (months 0 and 6) and placebo (month 0) or MenB-FHbp (months 0 and 6) and MenACWY-CRM (month 0) via intramuscular injection into the upper deltoid. All individuals were masked to group allocation, except staff involved in vaccine dispensation, preparation, and administration; and protocol adherence. Endpoints for serogroups A, C, W, and Y included the proportion of participants who achieved at least a four-fold increase in serum bactericidal antibody using human complement (hSBA) titres between baseline and 1 month after each vaccination. For serogroup B, secondary endpoints included the proportion of participants who achieved at least a four-fold increase in hSBA titres from baseline for each of four primary test strains and the proportion of participants who achieved titres of at least the lower limit of quantitation against all four test strains combined at 1 month after the second dose. Endpoints for serogroups A, C, W, and Y were assessed in the modified intent-to-treat (mITT) population, which included all randomly assigned participants who received at least one vaccine dose and had at least one valid and determinate MenB or serogroup A, C, W, or Y assay result before vaccination up to 1 month after the second dose, assessed in ACWY-experienced and ACWY-naive participants separately. Secondary endpoints for serogroup B were analysed in the evaluable immunogenicity population, which included all participants in the mITT population who were randomly assigned to the group of interest, received all investigational products as randomly assigned, had blood drawn for assay testing within the required time frames, had at least one valid and determinate MenB assay result after the second vaccination, and had no important protocol deviations; outcomes were assessed in both ACWY-experienced and ACWY-naive populations combined. Non-inferiority of MenABCWY to MenACWY-CRM and MenB-FHbp was determined using a -10% non-inferiority margin for these endpoints. Reactogenicity and adverse events were assessed among all participants who received at least one vaccine dose and who had available safety data. This trial is registered with Clinicaltrials.gov, NCT03135834, and is complete. FINDINGS: Between April 24 and November 10, 2017, 1610 participants (809 MenACWY-naive; 801 MenACWY-experienced) were randomly assigned: 544 to receive MenABCWY and placebo (n=272 MenACWY-naive; n=272 MenACWY-experienced) and 1066 to receive MenB-FHbp and MenACWY-CRM (n=537 MenACWY-naive; n=529 MenACWY-experienced). Among MenACWY-naive or MenACWY-experienced MenABCWY recipients, 75·5% (95% CI 69·8-80·6; 194 of 257; serogroup C) to 96·9% (94·1-98·7; 254 of 262; serogroup A) and 93·0% (88·4-96·2; 174 of 187; serogroup Y) to 97·4% (94·4-99·0; 224 of 230; serogroup W) achieved at least four-fold increases in hSBA titres against serogroups ACWY after dose 1 or 2, respectively, in ad-hoc analyses. Additionally, 75·8% (71·5-79·8; 320 of 422) to 94·7% (92·1-96·7; 396 of 418) of MenABCWY and 67·4% (64·1-70·6; 563 of 835) to 95·0% (93·3-96·4; 782 of 823) of MenB-FHbp recipients achieved at least four-fold increases in hSBA titres against MenB strains after dose 2 in secondary analyses; 79·9% (334 of 418; 75·7-83·6) and 74·3% (71·2-77·3; 605 of 814), respectively, achieved composite responses. MenABCWY was non-inferior to MenACWY-CRM (single dose) and to MenB-FHbp in ad-hoc analyses based on the proportion of participants with at least a four-fold increase in hSBA titres from baseline and (for MenB-FHbp only) composite responses. Reactogenicity events after vaccination were similarly frequent across groups, were mostly mild or moderate, and were unaffected by MenACWY experience. No adverse events causing withdrawals were related to the investigational product. Serious adverse events were reported in four (1·5%; 0·4-3·7) MenACWY-naive individuals in the MenABCWY group versus six (2·2%; 0·8-4·8) among MenACWY-experienced individuals in the MenABCWY group and 14 (1·3%; 0·7-2·2) in the active control group (MenACWY-experienced and MenACWY-naive individuals combined); none of these were considered related to the investigational product. INTERPRETATION: MenABCWY immune responses were robust and non-inferior to MenACWY-CRM and MenB-FHbp administered separately, and MenABCWY was well tolerated. The favourable benefit-risk profile supports further MenABCWY evaluation as a simplified schedule compared with current adolescent meningococcal vaccination programmes. FUNDING: Pfizer.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Humans , Adolescent , Young Adult , Vaccines, Conjugate , Meningococcal Infections/prevention & control , Meningococcal Infections/drug therapy , Vaccination/methods , Vaccines, Combined , Antibodies, Bacterial , Immunogenicity, Vaccine
4.
Epidemiol Infect ; 151: e57, 2023 03 06.
Article in English | MEDLINE | ID: mdl-37052295

ABSTRACT

The epidemiology of invasive meningococcal disease (IMD) is unpredictable, varies by region and age group and continuously evolves. This review aimed to describe trends in the incidence of IMD and serogroup distribution by age group and global region over time. Data were extracted from 90 subnational, national and multinational grey literature surveillance reports and 22 published articles related to the burden of IMD from 2010 to 2019 in 77 countries. The global incidence of IMD was generally low, with substantial variability between regions in circulating disease-causing serogroups. The highest incidence was usually observed in infants, generally followed by young children and adolescents/young adults, as well as older adults in some countries. Globally, serogroup B was a predominant cause of IMD in most countries. Additionally, there was a notable increase in the number of IMD cases caused by serogroups W and Y from 2010 to 2019 in several regions, highlighting the unpredictable and dynamic nature of the disease. Overall, serogroups A, B, C, W and Y were responsible for the vast majority of IMD cases, despite the availability of vaccines to prevent disease due to these serogroups.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Child , Infant , Adolescent , Young Adult , Humans , Child, Preschool , Aged , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Serogroup , Risk Factors , Incidence
5.
Vaccine ; 41(17): 2729-2733, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37024411

ABSTRACT

MenB-FHbp is a meningococcal serogroup B vaccine. Persistence of hSBA titers against 4 diverse test strains ≤ 4 years after a 2-dose MenB-FHbp primary series and ≤ 26 months after a booster dose administered 4 years post-primary has been demonstrated. Here, we developed a power law model (PLM) to estimate the persistence of hSBA titers up to 5 years after a MenB-FHbp primary series and a booster dose using hSBA data from previous MenB-FHbp clinical trials in healthy adolescents. The PLM-predicted hSBA titers closely followed observed values after a 0, 6 month MenB-FHbp primary series and a booster dose 4 years later. At 5 years post-primary and 5 years post-booster, the PLM predicted that 15.2 %-50.0 % and 51.2 %-70.9 % of individuals, respectively, would have hSBA titers ≥ 1:8 or 1:16. The PLM supports that the persistence of hSBA titers is maintained for at least 5 years post-primary MenB-FHbp vaccination and post-booster.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Adolescent , Humans , Meningococcal Infections/prevention & control , Antibodies, Bacterial
6.
Lancet Infect Dis ; 23(1): 103-116, 2023 01.
Article in English | MEDLINE | ID: mdl-36087588

ABSTRACT

BACKGROUND: The meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) is licensed for use in children aged 10 years or older for protection against invasive serogroup B meningococcal disease. Because young children are at increased risk of invasive meningococcal disease, MenB-FHbp clinical data in this population are needed. METHODS: We conducted two phase 2 randomised, controlled, observer-blinded studies including healthy toddlers (age 12-23 months) across 26 Australian, Czech, Finnish, and Polish centres, and older children (age 2-9 years) across 14 Finnish and Polish centres. Exclusion criteria included previous vaccinations against serogroup B meningococcus or hepatitis A virus (HAV), and chronic antibiotic use. Toddlers were randomly allocated (2:1) via an interactive response technology system to receive either 60 µg or 120 µg MenB-FHbp or HAV vaccine and saline (control). Older children were randomly allocated (3:1) to receive 120 µg MenB-FHbp or control, with stratification by age group (2-3 years and 4-9 years). All vaccinations were administered as three doses (0, 2, and 6 months, with only saline given at 2 months in the control group). Toddlers who received 120 µg MenB-FHbp could receive a 120 µg booster dose 24 months after the end of the primary series. The percentages of participants with serum bactericidal activity using human complement (hSBA) titres at or above the lower limit of quantification (LLOQ; all greater than the 1:4 correlate of protection) against four test strains of serogroup B meningococcus 1 month after the third dose (primary immunogenicity endpoint) were measured in the evaluable immunogenicity populations (participants who received the vaccine as randomised, had available and determinate hSBA results, and had no major protocol violations). Not all participants were tested against all strains because of serum sample volume constraints. The frequencies of reactogenicity and adverse events after each dose were recorded in the safety population (all participants who received at least one dose and had safety data available). These studies are registered with ClinicalTrials.gov (NCT02534935 and NCT02531698) and are completed. FINDINGS: Between Aug 31, 2015, and Aug 22, 2016, for the toddler study and between Aug 27, 2015, and March 7, 2016, for the older children study, we enrolled and randomly allocated 396 toddlers (60 µg MenB-FHbp group n=44; 120 µg MenB-FHbp group n=220; control group n=132) and 400 older children (120 µg MenB-FHbp group n=294; control group n=106). 1 month after the third dose, the proportions of participants with hSBA titres at or above the LLOQ ranged across test strains from 85·0% (95% CI 62·1-96·8; 17 of 20 participants) to 100·0% (82·4-100·0; 19 of 19) in toddlers receiving 60 µg MenB-FHbp, and from 71·6% (61·4-80·4; 68 of 95) to 100·0% (96·2-100·0; 95 of 95) in toddlers receiving 120 µg MenB-FHbp, and from 79·1% (71·2-85·6; 106 of 134) to 100·0% (97·4-100·0; 139 of 139) in children aged 2-9 years receiving 120 µg MenB-FHbp. hSBA titres peaked at 1 month after the third primary dose of MenB-FHbp and then declined over time. 24 months after the third dose in the toddler study, the proportions with hSBA titres at or above the LLOQ ranged from 0·0% (0·0-17·6; 0 of 19 participants) to 41·2% (18·4-67·1; seven of 17) in those who received 60 µg MenB-FHbp and from 3·7% (0·8-10·4; three of 81) to 22·8% (14·1-33·6; 18 of 79) in those who received 120 µg MenB-FHbp. 1 month after the booster dose in toddlers, the proportions with hSBA titres at or above the LLOQ were higher than at 1 month after the primary series. MenB-FHbp reactogenicity was mostly transient and of mild to moderate severity. Adverse event frequency was similar between the MenB-FHbp and control groups and less frequent following MenB-FHbp booster than following primary doses. Two participants from the toddler study (both from the 120 µg MenB-FHbp group) and four from the older children study (three from the 120 µg MenB-FHbp group and one from the control group) were withdrawn from the study because of adverse events. INTERPRETATION: MenB-FHbp was well tolerated and induced protective immune responses in a high proportion of participants. These findings support a favourable MenB-FHbp immunogenicity and reactogenicity profile in young children, a population at increased risk of adverse invasive meningococcal disease outcomes. FUNDING: Pfizer.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Humans , Child , Adolescent , Child, Preschool , Carrier Proteins , Serogroup , Australia , Meningococcal Infections/prevention & control , Immunogenicity, Vaccine
7.
Expert Rev Vaccines ; 21(6): 753-769, 2022 06.
Article in English | MEDLINE | ID: mdl-35469524

ABSTRACT

INTRODUCTION: The two currently licensed surface protein non-capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED: In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION: Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity, and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains, which are covered by the two licensed vaccines, is important in understanding protection from disease and public health use.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Antigens, Bacterial , Bacterial Vaccines , Humans , Membrane Proteins , Meningococcal Infections/prevention & control
8.
Euro Surveill ; 27(3)2022 Jan.
Article in English | MEDLINE | ID: mdl-35057902

ABSTRACT

BackgroundInvasive meningococcal disease (IMD) epidemiology has fluctuated over the past 25 years and varies among serogroups, age groups and geographical locations.AimThis study analysed the evolution of European IMD epidemiology from 2008 to 2017 to identify trends.MethodsReported number of IMD cases and associated incidence were extracted from the European Centre for Disease Prevention and Control Surveillance Atlas for Infectious Diseases for individual European countries. Epidemiology and its evolution were analysed by serogroup and age group.ResultsOverall IMD incidence decreased by 34.4% between 2008 and 2017. Serogroup B remained predominant in 2017; despite a 56.1% decrease over the 10-year period, the rate of decrease has slowed in recent years and varies by age group. Serogroup C was the second most prevalent serogroup until 2016. Its incidence decreased among individuals aged 1-24 years, the main population targeted by MenC vaccination campaigns, but increases have occurred in other age groups. Incidences of serogroups W and Y were low but increased by > 500% and > 130% (to 0.10 and 0.07/100,000) respectively, from 2008 to 2017. Considering all serogroups, a marked modification of the evolution trends by age group has occurred, with increases in incidence mainly affecting older age groups.ConclusionAlthough the overall IMD incidence decreased in Europe between 2008 and 2017, increases were observed for serogroups W and Y, and in the older population when considering all serogroups. It may be necessary to adapt current vaccination strategies to reflect epidemiological changes and their likely future evolution.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Adolescent , Adult , Aged , Child , Child, Preschool , Europe/epidemiology , Humans , Incidence , Infant , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Serogroup , Young Adult
9.
Vaccine ; 40(2): 351-358, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34961633

ABSTRACT

BACKGROUND: The MenB-FHbp vaccine is licensed to prevent meningococcal serogroup B disease on either a 2-dose (0, 6 months) or 3-dose (0, 1-2, 6 months) series. This phase 3 study further assessed the immunogenicity and safety of the 2-dose MenB-FHbp schedule. METHODS: Subjects 10-25 years of age received MenB-FHbp (months 0, 6) and the quadrivalent meningococcal conjugate vaccine MenACWY-CRM (month 0). Primary immunogenicity endpoints included percentages of subjects achieving ≥ 4-fold increases from baseline in serum bactericidal antibody using human complement (hSBA) titers for 4 diverse, vaccine-heterologous primary serogroup B test strains and titers ≥ lower limit of quantitation (LLOQ; 1:8 or 1:16) for all 4 primary strains combined (composite response) after dose 2; a titer ≥ 1:4 is the accepted correlate of protection. Percentages of participants with hSBA titers ≥ LLOQ for 10 additional vaccine-heterologous strains were also assessed; positive predictive values of primary strain responses for secondary strain responses were determined. Safety was assessed. RESULTS: Overall, 1057 subjects received dose 1 and 946 received dose 2 of MenB-FHbp. Percentages of participants achieving ≥ 4-fold increases in hSBA titers against each primary strain after dose 2 ranged from 67.4% to 95.0% and the composite response was 74.3%. Primary strain responses were highly predictive of secondary strain responses. Most reactogenicity events were mild-to-moderate in severity and did not lead to withdrawal from the study. Adverse events (AEs) considered by the investigator to be related to vaccination occurred in 4.2% (44/1057) of subjects, and there were no serious AEs or newly diagnosed chronic medical conditions considered related to vaccination. CONCLUSIONS: MenB-FHbp administered at 0, 6 months was well tolerated and induced protective bactericidal antibody responses against diverse serogroup B strains. Findings provide further support for the continued use of MenB-FHbp on a 2-dose schedule in this population.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Adolescent , Antibodies, Bacterial , Humans , Meningococcal Infections/prevention & control , Meningococcal Vaccines/adverse effects , Serogroup , Vaccination , Young Adult
10.
Expert Rev Vaccines ; 21(6): 739-751, 2022 06.
Article in English | MEDLINE | ID: mdl-34287103

ABSTRACT

INTRODUCTION: Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED: In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION: Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Antigens, Bacterial , Humans , Membrane Proteins , Meningococcal Infections/prevention & control
11.
Postgrad Med ; 134(4): 341-348, 2022 May.
Article in English | MEDLINE | ID: mdl-33615973

ABSTRACT

OBJECTIVE: Globally, 5 serogroups (A, B, C, W, and Y) cause the majority of invasive meningococcal disease (IMD). Vaccines targeting these serogroups are currently part of the US adolescent immunization platform, which includes 1 + 1 dosing of a MenACWY vaccine routinely at ages 11 and 16 years and 2 doses of a MenB vaccine at age 16-23 years under shared clinical decision-making between the patient and healthcare provider. In 2018, MenACWY vaccination coverage was 86.6% for ≥1 dose and 50.8% for ≥2 doses, whereas MenB vaccination coverage was 17.2% for ≥1 dose and <50% for completion of the multidose series. A pentavalent MenABCWY vaccine could simplify immunization schedules and improve vaccination coverage. We estimated the public health impact of a pentavalent MenABCWY vaccine using a model that considers meningococcal carriage and vaccination coverage. METHODS: A population-based dynamic model estimated the 10-year reduction in IMD from implementing a MenABCWY vaccine within the existing US meningococcal immunization platform. Five vaccination schedules (4 new, 1 existing) were examined to estimate the impact of different recommendations on the overall reduction in the number of IMD cases. Sensitivity analyses were performed by varying vaccination coverage at age 16 years. RESULTS: The existing schedule and coverage of MenACWY and MenB vaccines (total 4 doses) could potentially avert 165 IMD cases over 10 years versus no vaccination. Assuming similar MenABCWY and MenACWY vaccination coverage rates at age 16 years, replacing 1 or more MenACWY and/or MenB doses with MenABCWY could avert more cases, ranging from 189 to 256. The most beneficial MenABCWY vaccine schedule was 2 doses at age 11 years and 1 dose at age 16 years. CONCLUSIONS: Replacing one or more MenACWY/MenB vaccine doses with MenABCWY could reduce IMD caused by all 5 meningococcal serogroups among the US adolescent population, while also reducing the number of injections required.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Adolescent , Adult , Child , Humans , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Public Health , United States/epidemiology , Vaccination , Vaccines, Combined , Young Adult
12.
Vaccine ; 39(32): 4545-4554, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34215452

ABSTRACT

BACKGROUND: To demonstrate extended protection against meningococcal serogroup B (MenB) disease after MenB-FHbp (bivalent rLP2086) vaccination, this study evaluated immunopersistence through 26 months following MenB-FHbp boosting after 2 or 3 primary doses in adolescents. STUDY DESIGN: This phase 3, open-label study was an extension of 3 phase 2 studies with participants aged 11-18 years randomized to receive primary MenB-FHbp vaccination following 1 of 5 dosing schedules or control. A booster dose was administered 48 months after the primary series. Immunopersistence through 48 months after the last primary dose (persistence stage) and 26 months postbooster (booster stage) was determined by serum bactericidal assays using human complement (hSBAs) against 4 vaccine-heterologous test strains. Safety evaluations included adverse events (AEs) and local and systemic reactions. RESULTS: Overall, 698 and 304 subjects enrolled in the persistence and booster stages, respectively. hSBA titers declined in all groups during 12 months postprimary vaccination, then remained stable through 48 months. One month postbooster, 93.4-100.0% of subjects achieved hSBA titers ≥ lower limit of quantitation against each test strain; percentages at 12 and 26 months postbooster were higher than at similar time points following primary vaccination. Primary and booster MenB-FHbp vaccinations were well tolerated, with ≤ 12.5% of subjects reporting AEs during each stage. The most common local (reported by 84.4-93.8% of subjects) and systemic (68.8-76.6%) reactions to the booster were injection site pain and fatigue and headache, respectively; ≤ 3.7% of subjects reported severe systemic events. CONCLUSION: Protective hSBA titers initially declined but were retained by many subjects for 4 years irrespective of primary MenB-FHbp vaccination schedule. Boosting at 48 months after primary vaccination was safe, well tolerated, and induced immune responses indicative of immunological memory that persisted through 26 months. Booster vaccination during late adolescence may prolong protection against MenB disease.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Adolescent , Antibodies, Bacterial , Humans , Immunogenicity, Vaccine , Meningococcal Infections/prevention & control , Meningococcal Vaccines/adverse effects , Serogroup
13.
BMC Public Health ; 20(1): 1890, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298015

ABSTRACT

BACKGROUND: Monovalent meningococcal C conjugate vaccine (MCCV) was introduced into the routine immunization program in many countries in Europe and worldwide following the emergence of meningococcal serogroup C (MenC) in the late 1990s. This systematic literature review summarizes the immediate and long-term impact and effectiveness of the different MCCV vaccination schedules and strategies employed. METHODS: We conducted a systematic literature search for peer-reviewed, scientific publications in the databases of MEDLINE (via PubMed), LILACS, and SCIELO. We included studies from countries where MCCV have been introduced in routine vaccination programs and studies providing the impact and effectiveness of MCCV published between 1st January 2001 and 31st October 2017. RESULTS: Forty studies were included in the review; 30 studies reporting impact and 17 reporting effectiveness covering 9 countries (UK, Spain, Italy, Canada, Brazil, Australia, Belgium, Germany and the Netherlands). Following MCCV introduction, significant and immediate reduction of MenC incidence was consistently observed in vaccine eligible ages in all countries with high vaccine uptake. The reduction in non-vaccine eligible ages (especially population > 65 years) through herd protection was generally observed 3-4 years following introduction. Vaccine effectiveness (VE) was mostly assessed through screening methods and ranged from 38 to 100%. The VE was generally highest during the first year after vaccination and waned over time. The VE was better maintained in countries employing catch-up campaigns in older children and adolescents, compared to routine infant only schedules. CONCLUSIONS: MCCV were highly effective, showing a substantial and sustained decrease in MenC invasive meningococcal disease. The epidemiology of meningococcal disease is in constant transition, and some vaccination programs now include adolescents and higher valent vaccines due to the recent increase in cases caused by serogroups not covered by MCCV. Continuous monitoring of meningococcal disease is essential to understand disease evolution in the setting of different vaccination programs.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Adolescent , Aged , Australia , Belgium , Brazil , Canada , Child , Europe , Germany , Humans , Immunization Programs , Infant , Italy , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Netherlands , Spain , Vaccination , Vaccines, Conjugate
15.
Vaccine ; 38(49): 7716-7727, 2020 11 17.
Article in English | MEDLINE | ID: mdl-32878710

ABSTRACT

Neisseria meningitidis, the causative agent of invasive meningococcal disease (IMD), is classified into different serogroups defined by their polysaccharide capsules. Meningococcal serogroups A, B, C, W, and Y are responsible for most IMD cases, with serogroup B (MenB) causing a substantial percentage of IMD cases in many regions. Vaccines using capsular polysaccharides conjugated to carrier proteins have been successfully developed for serogroups A, C, W, and Y. However, because the MenB capsular polysaccharide is poorly immunogenic, MenB vaccine development has focused on alternative antigens. The 2 currently available MenB vaccines (MenB-4C and MenB-FHbp) both include factor H binding protein (FHbp), a surface-exposed protein harboured by nearly all meningococcal isolates that is important for survival of the bacteria in human blood. MenB-4C contains a nonlipidated FHbp from subfamily B in addition to other antigens, including Neisserial Heparin Binding Antigen, Neisserial adhesin A, and outer membrane vesicles, whereas MenB-FHbp contains a lipidated FHbp from each subfamily (A and B). FHbp is highly immunogenic and a main target of bactericidal activity of antibodies elicited by both licensed MenB vaccines. FHbp is also an important vaccine component, in contrast to some other meningococcal antigens that may have limited cross-protection across strains, as FHbp-specific antibodies can provide broad cross-protection within each subfamily. Limited cross-protection between subfamilies necessitates the inclusion of FHbp variants from both subfamilies to achieve broad FHbp-based vaccine coverage. Additionally, immune responses to the lipidated form of FHbp have a superior cross-reactive profile to those elicited by the nonlipidated form. Taken together, the inclusion of lipidated FHbp variants from both FHbp subfamilies is expected to provide broad protection against the diverse disease-causing meningococcal strains expressing a wide range of FHbp sequence variants. This review describes the development of vaccines for MenB disease prevention, with a focus on the FHbp antigen.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Antigens, Bacterial , Bacterial Proteins/genetics , Carrier Proteins , Complement Factor H , Humans , Meningococcal Infections/prevention & control
16.
Infect Dis Ther ; 9(3): 641-656, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32700260

ABSTRACT

INTRODUCTION: Two phase 3 studies in adolescents and young adults demonstrated that MenB-FHbp, a meningococcal serogroup B (MenB) vaccine, elicits protective immune responses after 2 or 3 doses based on serum bactericidal antibody assays using human complement (hSBA) against 4 primary and 10 additional diverse, vaccine-heterologous MenB test strains. Lower limits of quantitation (LLOQs; titers 1:8 or 1:16; titers ≥ 1:4 correlate with protection) were used to evaluate responses to individual strains and all 4 primary strains combined (composite response). A post hoc analysis evaluated percentages of subjects with protective responses to as many as 8 strains combined (4 primary plus additional strains). METHODS: Immune responses were measured using hSBAs against 4 primary strains in adolescents (n = 1509, MenB-FHbp; n = 898, hepatitis A virus vaccine/saline) and young adults (n = 2480, MenB-FHbp; n = 824, saline) receiving MenB-FHbp or control at 0, 2, and 6 months. Ten additional strains were evaluated in subsets of subjects from approximately 1800 MenB-FHbp recipients across both studies. Percentages of subjects with hSBA titers ≥ LLOQ for different numbers of primary strains or primary plus additional strains combined (7 or 8 strains total per subset) were determined before vaccination, 1 month post-dose 2, and 1 month post-dose 3. RESULTS: Across the panel of primary plus additional strains, at 1 month post-dose 3, titers ≥ LLOQ were elicited in 93.7-95.7% of adolescents and 91.7-95.0% of young adults for ≥ 5 test strains combined and in 70.5-85.8% of adolescents and 67.5-81.4% of young adults for ≥ 7 strains combined. Among adolescents, 99.8%, 99.0%, 92.8%, and 82.7% had titers ≥ LLOQ against at least 1, 2, 3, and all 4 primary strains, respectively; corresponding percentages for young adults were 99.7%, 97.7%, 94.0%, and 84.5%. CONCLUSIONS: Results support the ability of MenB-FHbp to provide broad coverage against MenB strains expressing diverse FHbp variants. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT01830855, NCT01352845.

17.
Infect Dis Ther ; 9(3): 625-639, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681472

ABSTRACT

INTRODUCTION: An extensive clinical development program showed that the meningococcal serogroup B-factor H binding protein (MenB-FHbp) vaccine affords protection against MenB disease for adolescents and adults. Data were pooled from multiple studies within the program to examine whether MenB-FHbp immunogenicity was influenced by sex, age, or race. METHODS: Immunogenicity was assessed in subjects from seven studies who received 120 µg MenB-FHbp (at 0, 2, 6 months) and had evaluated immune responses against four representative test strains via serum bactericidal assays using human complement (hSBAs). Immune responses were presented by sex (male, female), age group (10-14, 15-18, 19-25, 10-25 years), and race (white, black, Asian, other). RESULTS: Among 8026 subjects aged 10-25 years included in this analysis, MenB-FHbp elicited robust immune responses in a high percentage of subjects regardless of demographic characteristics. Across all test strains and demographic subsets, a ≥ 4-fold rise in titer from baseline was achieved in 76.7-95.0% of subjects, with no major differences by sex, age groups assessed, or races evaluated. Corresponding percentages achieving titers ≥ the lower limit of quantification (LLOQ) against all four strains combined were 79.7-87.3% (sex), 81.6-85.5% (age), and 80.0-88.1% (race). Minor differences were observed for geometric mean titers and percentages of subjects achieving titers ≥ LLOQ against each strain based on demographics. CONCLUSION: These data suggested no clinically meaningful differences in MenB-FHbp immunogenicity when administered as a three-dose schedule based on sex, ages assessed, or races evaluated. This analysis supports the continued recommended use of MenB-FHbp to prevent MenB disease in adolescents and young adults. TRIAL REGISTRATION: ClinicalTrials.gov identifiers, NCT00808028, NCT01830855, NCT01323270, NCT01461993, NCT01461980, NCT01352845, and NCT01299480.

18.
Vaccine ; 38(27): 4236-4245, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32389497

ABSTRACT

The long-term persistence of antibody responses following primary vaccination with quadrivalent conjugate vaccines targeting meningococcal serogroups A, C, W, and Y (MenACWY) and the duration of protection following a booster dose have not been fully elucidated, particularly in children who received primary dosing as toddlers. This review summarizes the findings of one phase 3 and three phase 2 open-label, randomized clinical studies that assessed the long-term antibody persistence of MenACWY conjugated to tetanus toxoid as a carrier protein (MenACWY-TT) in toddlers. Following primary vaccination, antibody responses persisted for approximately 2-3 years and then decreased up to 5 years after vaccination. Geometric mean titers remained elevated for all serogroups up to 5 years after primary vaccination. In children who received a booster dose of MenACWY-TT at 4-5 years after primary dosing as toddlers, antibody responses were documented in >99% of subjects across all serogroups, with minimal decreases in antibody persistence from 2-6 years after booster vaccination. The persistence of meningococcal serogroup C (MenC) antibody responses was similar between MenACWY-TT and MenC vaccine recipients after primary and booster dosing. Together, these findings indicate that antibody responses to primary MenACWY-TT vaccination persist for 2-3 years. Additionally, these findings indicate that in subjects who receive primary MenACWY-TT vaccination as toddlers, the antibody response to booster MenACWY-TT vaccination lasts for up to 6 years and suggest that immune memory is afforded at least into early adolescence, which is an age group at increased risk of invasive meningococcal disease.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Adolescent , Antibodies, Bacterial , Child, Preschool , Humans , Immunization, Secondary , Meningococcal Infections/prevention & control , Time Factors , Vaccination , Vaccines, Conjugate
19.
Postgrad Med ; 132(2): 184-191, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32124678

ABSTRACT

Invasive meningococcal disease (IMD) is a potentially devastating infection associated with high mortality and long-term sequelae; however, vaccines are available to protect against the five common disease-causing serogroups (A, B, C, W, and Y). Because traditional field efficacy clinical trials were not feasible due to low IMD incidence that necessitates a very large number of participants, serum bactericidal antibody (SBA) assays using rabbit (rSBA) or human (hSBA) complement were established as in vitro surrogates of meningococcal vaccine efficacy and are now routinely used to support vaccine licensure. Specifically, rSBA assays have been used to evaluate responses to meningococcal capsular polysaccharide-protein conjugate vaccines against serogroups A, C, W, and Y; the accepted correlate of protection for rSBA assays is a titer ≥1:8. Importantly, because the bacterial capsular polysaccharide antigen is conserved across strains, only one test strain that expresses an invariant polysaccharide capsule for each serogroup is required to assess coverage. rSBA assays are unsuitable for subcapsular protein-based serogroup B (MenB) vaccines, and therefore, hSBA assays have been used for licensure; titers ≥1:4 are considered the correlate of protection against IMD for hSBA. In contrast to MenACWY vaccines, because bacterial surface proteins are antigenically variable, MenB vaccines must be tested with hSBA assays using multiple test strains that represent the antigenic diversity of disease-causing isolates. As this complexity regarding SBA assessment methods can make data interpretation difficult, herein we describe the use of hSBA assays to evaluate MenB vaccine efficacy and to support licensure. In addition, we highlight how the two recently approved MenB vaccines differ in their use of hSBA assays in clinical studies to demonstrate broad protection against MenB IMD.


Subject(s)
Meningococcal Infections/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup B/immunology , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Complement System Proteins/immunology , Humans , Meningococcal Infections/prevention & control , Meningococcal Vaccines/administration & dosage , Rabbits
20.
Hum Vaccin Immunother ; 15(10): 2491-2500, 2019.
Article in English | MEDLINE | ID: mdl-30883271

ABSTRACT

Invasive meningococcal disease is rare and potentially devastating but often vaccine-preventable. Evaluation of meningococcal vaccine effectiveness is impractical owing to relatively low disease incidence; protection is therefore estimated using serum bactericidal antibody (SBA) assays. Original experiments on natural immunity established a titer of ≥4 as the correlate of protection for SBA assays using human complement (hSBA), but human complement is relatively difficult to obtain and standardize. Use of baby rabbit complement (rSBA assays), per standard guidelines for serogroups A and C, generally results in comparatively higher titers. Postlicensure effectiveness data for serogroup C conjugate vaccines support acceptance of rSBA titers ≥8 as the correlate of protection for this serogroup, but no thresholds have been formally established for serogroups A, W, and Y. Studies evaluating MenACWY-TT (Nimenrix®; Pfizer Inc, Sandwich, UK) immunogenicity have used both hSBA and rSBA assays, and ultimately suggest that rSBA may be more appropriate for these measurements.


Subject(s)
Complement System Proteins/analysis , Complement System Proteins/immunology , Meningococcal Vaccines/immunology , Serum Bactericidal Antibody Assay/standards , Animals , Antibodies, Bacterial/blood , Humans , Meningococcal Infections/diagnosis , Meningococcal Infections/prevention & control , Rabbits/immunology , Serogroup , Serum Bactericidal Antibody Assay/methods , Time Factors , Vaccines, Conjugate/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...