Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nat Commun ; 15(1): 1492, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374032

ABSTRACT

This study investigates correlates of anti-S1 antibody response following COVID-19 vaccination in a U.S. population-based meta-cohort of adults participating in longstanding NIH-funded cohort studies. Anti-S1 antibodies were measured from dried blood spots collected between February 2021-August 2022 using Luminex-based microsphere immunoassays. Of 6245 participants, mean age was 73 years (range, 21-100), 58% were female, and 76% were non-Hispanic White. Nearly 52% of participants received the BNT162b2 vaccine and 48% received the mRNA-1273 vaccine. Lower anti-S1 antibody levels are associated with age of 65 years or older, male sex, higher body mass index, smoking, diabetes, COPD and receipt of BNT16b2 vaccine (vs mRNA-1273). Participants with a prior infection, particularly those with a history of hospitalized illness, have higher anti-S1 antibody levels. These results suggest that adults with certain socio-demographic and clinical characteristics may have less robust antibody responses to COVID-19 vaccination and could be prioritized for more frequent re-vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Adult , Humans , Female , Male , Aged , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Demography , Vaccination
2.
JAMA Cardiol ; 9(3): 263-271, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294787

ABSTRACT

Importance: Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified. Objective: To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (≥190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults. Design, Setting, and Participants: A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023. Exposures: LDL-C, cumulative past LDL-C, FH variant status. Main Outcomes and Measures: Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults. Results: Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3%) and in 33 individuals with severely elevated LDL-C (2.5%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95% CI, 1.4-6.0) and 2.6 (95% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant. Conclusions and Relevance: In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Artery Disease , Hypercholesterolemia , Hyperlipoproteinemia Type II , Young Adult , Humans , Female , Middle Aged , Male , Hypercholesterolemia/complications , Cholesterol, LDL/genetics , Cardiovascular Diseases/prevention & control , Cohort Studies , Risk Factors , Hyperlipoproteinemia Type II/diagnosis , Coronary Artery Disease/complications , Atherosclerosis/complications , Heart Disease Risk Factors
3.
Am J Respir Crit Care Med ; 208(8): 846-857, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37470492

ABSTRACT

Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have antiinflammatory properties and may benefit lung health. Objectives: To investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in a diverse sample of adults from general-population cohorts. Methods: Complementary study designs: 1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV1 and FVC measures in the NHLBI Pooled Cohorts Study and 2) two-sample Mendelian randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid levels were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for the most metabolically downstream omega-3 fatty acid, docosahexaenoic acid (DHA). An increase in DHA of 1% of total fatty acids was associated with attenuations of 1.4 ml/yr for FEV1 (95% confidence interval [CI], 1.1-1.8) and 2.0 ml/yr for FVC (95% CI, 1.6-2.4) and a 7% lower incidence of spirometry-defined airway obstruction (95% CI, 0.89-0.97). DHA associations persisted across sexes and smoking histories and in Black, White, and Hispanic participants, with associations of the largest magnitude in former smokers and Hispanic participants. The MR study showed similar trends toward positive associations of genetically predicted downstream omega-3 fatty acids with FEV1 and FVC. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher levels of downstream omega-3 fatty acids, especially DHA, on lung health.


Subject(s)
Airway Obstruction , Fatty Acids, Omega-3 , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Longitudinal Studies , Lung , Pulmonary Disease, Chronic Obstructive/genetics , Docosahexaenoic Acids
4.
Thorax ; 78(11): 1067-1079, 2023 11.
Article in English | MEDLINE | ID: mdl-37268414

ABSTRACT

BACKGROUND: Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations. METHODS: New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case-control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined. RESULTS: The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91-1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10-8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome. CONCLUSION: Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/genetics , Case-Control Studies , Unsupervised Machine Learning , Lung , Tomography, X-Ray Computed
6.
Thorax ; 78(6): 566-573, 2023 06.
Article in English | MEDLINE | ID: mdl-36690926

ABSTRACT

BACKGROUND: The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS: We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS: The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS: Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.


Subject(s)
Lung Diseases, Interstitial , Lung , Adult , Humans , Lung/diagnostic imaging , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/complications , Genotype , Telomere/genetics , Mucin-5B/genetics
7.
JAMA Netw Open ; 5(10): e2237908, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36269359

ABSTRACT

This cohort study examines the association of self-reported postvaccination symptoms with anti­SARS-CoV-2 antibody response among Framingham Heart Study participants contributing to the Collaborative Cohort of Cohorts for COVID-19 Research study.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Antibody Formation , Antibodies, Viral , Vaccination
9.
Eur Heart J ; 43(23): 2196-2208, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35467708

ABSTRACT

AIMS: The aim is to evaluate associations of lung function impairment with risk of incident heart failure (HF). METHODS AND RESULTS: Data were pooled across eight US population-based cohorts that enrolled participants from 1987 to 2004. Participants with self-reported baseline cardiovascular disease were excluded. Spirometry was used to define obstructive [forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) <0.70] or restrictive (FEV1/FVC ≥0.70, FVC <80%) lung physiology. The incident HF was defined as hospitalization or death caused by HF. In a sub-set, HF events were sub-classified as HF with reduced ejection fraction (HFrEF; EF <50%) or preserved EF (HFpEF; EF ≥50%). The Fine-Gray proportional sub-distribution hazards models were adjusted for sociodemographic factors, smoking, and cardiovascular risk factors. In models of incident HF sub-types, HFrEF, HFpEF, and non-HF mortality were treated as competing risks. Among 31 677 adults, there were 3344 incident HF events over a median follow-up of 21.0 years. Of 2066 classifiable HF events, 1030 were classified as HFrEF and 1036 as HFpEF. Obstructive [adjusted hazard ratio (HR) 1.17, 95% confidence interval (CI) 1.07-1.27] and restrictive physiology (adjusted HR 1.43, 95% CI 1.27-1.62) were associated with incident HF. Obstructive and restrictive ventilatory defects were associated with HFpEF but not HFrEF. The magnitude of the association between restrictive physiology and HFpEF was similar to associations with hypertension, diabetes, and smoking. CONCLUSION: Lung function impairment was associated with increased risk of incident HF, and particularly incident HFpEF, independent of and to a similar extent as major known cardiovascular risk factors.


Subject(s)
Heart Failure , Adult , Hospitalization , Humans , Lung , National Heart, Lung, and Blood Institute (U.S.) , Prognosis , Risk Factors , Stroke Volume/physiology , United States/epidemiology
10.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35385699

ABSTRACT

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Transcriptome , Humans , Lung , National Heart, Lung, and Blood Institute (U.S.) , Pulmonary Disease, Chronic Obstructive/genetics , Risk Factors , United States/epidemiology
11.
Am J Epidemiol ; 191(7): 1153-1173, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35279711

ABSTRACT

The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cohort Studies , Humans , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2 , United States/epidemiology , Young Adult
12.
Ann Am Thorac Soc ; 19(8): 1294-1304, 2022 08.
Article in English | MEDLINE | ID: mdl-35176216

ABSTRACT

Rationale: Early detection of chronic obstructive pulmonary disease (COPD) is a public health priority. Airflow obstruction is the single most important risk factor for adverse COPD outcomes, but spirometry is not routinely recommended for screening. Objectives: To describe the burden of subclinical airflow obstruction (SAO) and to develop a probability score for SAO to inform potential detection and prevention programs. Methods: Lung function and clinical data were harmonized and pooled across nine U.S. general population cohorts. Adults with respiratory symptoms, inhaler use, or prior diagnosis of COPD or asthma were excluded. A probability score for prevalent SAO (forced expiratory volume in 1 second/forced vital capacity < 0.70) was developed via hierarchical group-lasso regularization from clinical variables in strata of sex and smoking status, and its discriminative accuracy for SAO was assessed in the pooled cohort as well as in an external validation cohort (NHANES [National Health and Nutrition Examination Survey] 2011-2012). Incident hospitalizations and deaths due to COPD (respiratory events) were defined by adjudication or administrative criteria in four of nine cohorts. Results: Of 33,546 participants (mean age 52 yr, 54% female, 44% non-Hispanic White), 4,424 (13.2%) had prevalent SAO. The incidence of respiratory events (Nat-risk = 14,024) was threefold higher in participants with SAO versus those without (152 vs. 39 events/10,000 person-years). The probability score, which was based on six commonly available variables (age, sex, race and/or ethnicity, body mass index, smoking status, and smoking pack-years) was well calibrated and showed excellent discrimination in both the testing sample (C-statistic, 0.81; 95% confidence interval [CI], 0.80-0.82) and in NHANES (C-statistic, 0.83; 95% CI, 0.80-0.86). Among participants with predicted probabilities ⩾ 15%, 3.2 would need to undergo spirometry to detect one case of SAO. Conclusions: Adults with SAO demonstrate excess respiratory hospitalization and mortality. A probability score for SAO using commonly available clinical risk factors may be suitable for targeting screening and primary prevention strategies.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Adult , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Nutrition Surveys , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors , Spirometry , Vital Capacity
13.
Am J Respir Crit Care Med ; 205(6): 700-710, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34913853

ABSTRACT

Rationale: Normal values for FEV1 and FVC are currently calculated using cross-sectional reference equations that include terms for race/ethnicity, an approach that may reinforce disparities and is of unclear clinical benefit. Objectives: To determine whether race/ethnicity-based spirometry reference equations improve the prediction of incident chronic lower respiratory disease (CLRD) events and mortality compared with race/ethnicity-neutral equations. Methods: The MESA Lung Study, a population-based, prospective cohort study of White, Black, Hispanic, and Asian adults, performed standardized spirometry from 2004 to 2006. Predicted values for spirometry were calculated using race/ethnicity-based equations following guidelines and, alternatively, race/ethnicity-neutral equations without terms for race/ethnicity. Participants were followed for events through 2019. Measurements and Main Results: The mean age of 3,344 participants was 65 years, and self-reported race/ethnicity was 36% White, 25% Black, 23% Hispanic, and 17% Asian. There were 181 incident CLRD-related events and 547 deaths over a median of 11.6 years. There was no evidence that percentage predicted FEV1 or FVC calculated using race/ethnicity-based equations improved the prediction of CLRD-related events compared with those calculated using race/ethnicity-neutral equations (difference in C statistics for FEV1, -0.005; 95% confidence interval [CI], -0.013 to 0.003; difference in C statistic for FVC, -0.008; 95% CI, -0.016 to -0.0006). Findings were similar for mortality (difference in C statistics for FEV1, -0.002; 95% CI, -0.008 to 0.003; difference in C statistics for FVC, -0.004; 95% CI, -0.009 to 0.001). Conclusions: There was no evidence that race/ethnicity-based spirometry reference equations improved the prediction of clinical events compared with race/ethnicity-neutral equations. The inclusion of race/ethnicity in spirometry reference equations should be reconsidered.


Subject(s)
Atherosclerosis , Ethnicity , Adult , Cross-Sectional Studies , Forced Expiratory Volume , Humans , Lung , Prospective Studies , Reference Values , Spirometry , Vital Capacity
14.
JAMA ; 326(22): 2287-2298, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34905031

ABSTRACT

Importance: Chronic lung diseases are a leading cause of morbidity and mortality. Unlike chronic obstructive pulmonary disease, clinical outcomes associated with proportional reductions in expiratory lung volumes without obstruction, otherwise known as preserved ratio impaired spirometry (PRISm), are poorly understood. Objective: To examine the prevalence, correlates, and clinical outcomes associated with PRISm in US adults. Design, Setting, and Participants: The National Heart, Lung, and Blood Institute (NHLBI) Pooled Cohorts Study was a retrospective study with harmonized pooled data from 9 US general population-based cohorts (enrollment, 65 251 participants aged 18 to 102 years of whom 53 701 participants had valid baseline lung function) conducted from 1971-2011 (final follow-up, December 2018). Exposures: Participants were categorized into mutually exclusive groups by baseline lung function. PRISm was defined as the ratio of forced expiratory volume in the first second to forced vital capacity (FEV1:FVC) greater than or equal to 0.70 and FEV1 less than 80% predicted; obstructive spirometry FEV1:FVC ratio of less than 0.70; and normal spirometry FEV1:FVC ratio greater than or equal to 0.7 and FEV1 greater than or equal to 80% predicted. Main Outcomes and Measures: Main outcomes were all-cause mortality, respiratory-related mortality, coronary heart disease (CHD)-related mortality, respiratory-related events (hospitalizations and mortality), and CHD-related events (hospitalizations and mortality) classified by adjudication or validated administrative criteria. Absolute risks were adjusted for age and smoking status. Poisson and Cox proportional hazards models comparing PRISm vs normal spirometry were adjusted for age, sex, race and ethnicity, education, body mass index, smoking status, cohort, and comorbidities. Results: Among all participants (mean [SD] age, 53.2 [15.8] years, 56.4% women, 48.5% never-smokers), 4582 (8.5%) had PRISm. The presence of PRISm relative to normal spirometry was significantly associated with obesity (prevalence, 48.3% vs 31.4%; prevalence ratio [PR], 1.68 [95% CI, 1.55-1.82]), underweight (prevalence, 1.4% vs 1.0%; PR, 2.20 [95% CI, 1.72-2.82]), female sex (prevalence, 60.3% vs 59.0%; PR, 1.07 [95% CI, 1.01-1.13]), and current smoking (prevalence, 25.2% vs 17.5%; PR, 1.33 [95% CI, 1.22-1.45]). PRISm, compared with normal spirometry, was significantly associated with greater all-cause mortality (29.6/1000 person-years vs 18.0/1000 person-years; difference, 11.6/1000 person-years [95% CI, 10.0-13.1]; adjusted hazard ratio [HR], 1.50 [95% CI, 1.42-1.59]), respiratory-related mortality (2.1/1000 person-years vs 1.0/1000 person-years; difference, 1.1/1000 person-years [95% CI, 0.7-1.6]; adjusted HR, 1.95 [95% CI, 1.54-2.48]), CHD-related mortality (5.4/1000 person-years vs 2.6/1000 person-years; difference, 2.7/1000 person-years [95% CI, 2.1-3.4]; adjusted HR, 1.55 [95% CI, 1.36-1.77]), respiratory-related events (12.2/1000 person-years vs 6.0/1000 person-years; difference, 6.2/1000 person-years [95% CI, 4.9-7.5]; adjusted HR, 1.90 [95% CI, 1.69-2.14]), and CHD-related events (11.7/1000 person-years vs 7.0/1000 person-years; difference, 4.7/1000 person-years [95% CI, 3.7-5.8]; adjusted HR, 1.30 [95% CI, 1.18-1.42]). Conclusions and Relevance: In a large, population-based sample of US adults, baseline PRISm, compared with normal spirometry, was associated with a small but statistically significant increased risk for mortality and adverse cardiovascular and respiratory outcomes. Further research is needed to explore whether this association is causal.


Subject(s)
Forced Expiratory Volume , Lung Diseases/physiopathology , Spirometry , Vital Capacity , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/etiology , Female , Humans , Lung/physiopathology , Lung Diseases/complications , Lung Diseases/epidemiology , Lung Diseases/mortality , Male , Middle Aged , Prevalence , Retrospective Studies , United States/epidemiology
15.
IEEE Trans Med Imaging ; 40(12): 3652-3662, 2021 12.
Article in English | MEDLINE | ID: mdl-34224349

ABSTRACT

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease (COPD), and is traditionally subcategorized into three subtypes previously identified on autopsy. Unsupervised learning of emphysema subtypes on computed tomography (CT) opens the way to new definitions of emphysema subtypes and eliminates the need of thorough manual labeling. However, CT-based emphysema subtypes have been limited to texture-based patterns without considering spatial location. In this work, we introduce a standardized spatial mapping of the lung for quantitative study of lung texture location and propose a novel framework for combining spatial and texture information to discover spatially-informed lung texture patterns (sLTPs) that represent novel emphysema subtype candidates. Exploiting two cohorts of full-lung CT scans from the MESA COPD (n = 317) and EMCAP (n = 22) studies, we first show that our spatial mapping enables population-wide study of emphysema spatial location. We then evaluate the characteristics of the sLTPs discovered on MESA COPD, and show that they are reproducible, able to encode standard emphysema subtypes, and associated with physiological symptoms.


Subject(s)
Atherosclerosis , Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging
16.
medRxiv ; 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33758891

ABSTRACT

The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults at risk for coronavirus disease 2019 (COVID-19) comprising 14 established United States (US) prospective cohort studies. For decades, C4R cohorts have collected extensive data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R will link this pre-COVID phenotyping to information on SARS-CoV-2 infection and acute and post-acute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and broadly reflects the racial, ethnic, socioeconomic, and geographic diversity of the US. C4R is ascertaining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations, and high-quality events surveillance. Extensive pre-pandemic data minimize referral, survival, and recall bias. Data are being harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these will be pooled and shared widely to expedite collaboration and scientific findings. This unique resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including post-acute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term trajectories of health and aging.

17.
Nat Commun ; 11(1): 5182, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057025

ABSTRACT

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.


Subject(s)
Black or African American/genetics , Genetic Loci , Pulmonary Disease, Chronic Obstructive/genetics , Respiratory Physiological Phenomena/genetics , Whole Genome Sequencing , Adult , Aged , Aged, 80 and over , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Calcium-Binding Proteins/genetics , Feasibility Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lung/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide , Protein Inhibitors of Activated STAT/genetics , Pulmonary Disease, Chronic Obstructive/ethnology , Pulmonary Disease, Chronic Obstructive/physiopathology , Small Ubiquitin-Related Modifier Proteins/genetics
18.
Am J Epidemiol ; 189(10): 1173-1184, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32286615

ABSTRACT

The relationship between body weight and lung function is complex. Using a dyadic multilevel linear modeling approach, treating body mass index (BMI; weight (kg)/height (m)2) and lung function as paired, within-person outcomes, we tested the hypothesis that persons with more rapid increase in BMI exhibit more rapid decline in lung function, as measured by forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and their ratio (FEV1:FVC). Models included random intercepts and slopes and adjusted for sociodemographic and smoking-related factors. A sample of 9,115 adults with paired measurements of BMI and lung function taken at ≥3 visits were selected from a pooled set of 5 US population-based cohort studies (1983-2018; mean age at baseline = 46 years; median follow-up, 19 years). At age 46 years, average annual rates of change in BMI, FEV1, FVC, and FEV1:FVC ratio were 0.22 kg/m2/year, -25.50 mL/year, -21.99 mL/year, and -0.24%/year, respectively. Persons with steeper BMI increases had faster declines in FEV1 (r = -0.16) and FVC (r = -0.26) and slower declines in FEV1:FVC ratio (r = 0.11) (all P values < 0.0001). Results were similar in subgroup analyses. Residual correlations were negative (P < 0.0001), suggesting additional interdependence between BMI and lung function. Results show that greater rates of weight gain are associated with greater rates of lung function loss.


Subject(s)
Body Mass Index , Lung/physiology , Weight Gain , Adult , Aged , Cohort Studies , Humans , Linear Models , Middle Aged , Respiratory Function Tests
19.
JAMA Intern Med ; 180(5): 676-686, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32119036

ABSTRACT

Importance: Chronic bronchitis has been associated with cigarette smoking as well as with e-cigarette use among young adults, but the association of chronic bronchitis in persons without airflow obstruction or clinical asthma, described as nonobstructive chronic bronchitis, with respiratory health outcomes remains uncertain. Objective: To assess whether nonobstructive chronic bronchitis is associated with adverse respiratory health outcomes in adult ever smokers and never smokers. Design, Setting, and Participants: This prospective cohort study included 22 325 adults without initial airflow obstruction (defined as the ratio of forced expiratory volume in the first second [FEV1] to forced vital capacity [FVC] of <0.70) or clinical asthma at baseline. The National Heart, Lung, and Blood Institute (NHLBI) Pooled Cohorts Study harmonized and pooled data from 9 US general population-based cohorts. Thus present study is based on data from 5 of these cohorts. Participants were enrolled from August 1971 through May 2007 and were followed up through December 2018. Exposures: Nonobstructive chronic bronchitis was defined by questionnaire at baseline as both cough and phlegm for at least 3 months for at least 2 consecutive years. Main Outcomes and Measures: Lung function was measured by prebronchodilator spirometry. Hospitalizations and deaths due to chronic lower respiratory disease and respiratory disease-related mortality were defined by events adjudication and administrative criteria. Models were stratified by smoking status and adjusted for anthropometric, sociodemographic, and smoking-related factors. The comparison group was participants without nonobstructive chronic bronchitis. Results: Among 22 325 adults included in the analysis, mean (SD) age was 53.0 (16.3) years (range, 18.0-95.0 years), 58.2% were female, 65.9% were non-Hispanic white, and 49.6% were ever smokers. Among 11 082 ever smokers with 99 869 person-years of follow-up, participants with nonobstructive chronic bronchitis (300 [2.7%]) had accelerated decreases in FEV1 (4.1 mL/y; 95% CI, 2.1-6.1 mL/y) and FVC (4.7 mL/y; 95% CI, 2.2-7.2 mL/y), increased risks of chronic lower respiratory disease-related hospitalization or mortality (hazard ratio [HR], 2.2; 95% CI, 1.7-2.7), and greater respiratory disease-related (HR, 2.0; 95% CI, 1.1-3.8) and all-cause mortality (HR, 1.5; 95% CI, 1.3-1.8) compared with ever smokers without nonobstructive chronic bronchitis. Among 11 243 never smokers with 120 004 person-years of follow-up, participants with nonobstructive chronic bronchitis (151 [1.3%]) had greater rates of chronic lower respiratory disease-related hospitalization or mortality (HR, 3.1; 95% CI, 2.1-4.5) compared with never smokers without nonobstructive chronic bronchitis. Nonobstructive chronic bronchitis was not associated with FEV1:FVC decline or incident airflow obstruction. The presence of at least 1 of the component symptoms of nonobstructive chronic bronchitis (ie, chronic cough or phlegm), which was common in both ever smokers (11.0%) and never smokers (6.7%), was associated with adverse respiratory health outcomes. Conclusions and Relevance: The findings suggest that nonobstructive chronic bronchitis is associated with adverse respiratory health outcomes, particularly in ever smokers, and may be a high-risk phenotype suitable for risk stratification and targeted therapies.


Subject(s)
Bronchitis, Chronic/physiopathology , Lung/physiopathology , Smoking/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Asthma/physiopathology , Female , Humans , Male , Middle Aged , Prospective Studies , Respiratory Function Tests , Smokers , Young Adult
20.
Lancet Respir Med ; 8(1): 34-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31606435

ABSTRACT

BACKGROUND: Former smokers now outnumber current smokers in many developed countries, and current smokers are smoking fewer cigarettes per day. Some data suggest that lung function decline normalises with smoking cessation; however, mechanistic studies suggest that lung function decline could continue. We hypothesised that former smokers and low-intensity current smokers have accelerated lung function decline compared with never-smokers, including among those without prevalent lung disease. METHODS: We used data on six US population-based cohorts included in the NHLBI Pooled Cohort Study. We restricted the sample to participants with valid spirometry at two or more exams. Two cohorts recruited younger adults (≥17 years), two recruited middle-aged and older adults (≥45 years), and two recruited only elderly adults (≥65 years) with examinations done between 1983 and 2014. FEV1 decline in sustained former smokers and current smokers was compared to that of never-smokers by use of mixed models adjusted for sociodemographic and anthropometric factors. Differential FEV1 decline was also evaluated according to duration of smoking cessation and cumulative (number of pack-years) and current (number of cigarettes per day) cigarette consumption. FINDINGS: 25 352 participants (ages 17-93 years) completed 70 228 valid spirometry exams. Over a median follow-up of 7 years (IQR 3-20), FEV1 decline at the median age (57 years) was 31·01 mL per year (95% CI 30·66-31·37) in sustained never-smokers, 34·97 mL per year (34·36-35·57) in former smokers, and 39·92 mL per year (38·92-40·92) in current smokers. With adjustment, former smokers showed an accelerated FEV1 decline of 1·82 mL per year (95% CI 1·24-2·40) compared to never-smokers, which was approximately 20% of the effect estimate for current smokers (9·21 mL per year; 95% CI 8·35-10·08). Compared to never-smokers, accelerated FEV1 decline was observed in former smokers for decades after smoking cessation and in current smokers with low cumulative cigarette consumption (<10 pack-years). With respect to current cigarette consumption, the effect estimate for FEV1 decline in current smokers consuming less than five cigarettes per day (7·65 mL per year; 95% CI 6·21-9·09) was 68% of that in current smokers consuming 30 or more cigarettes per day (11·24 mL per year; 9·86-12·62), and around five times greater than in former smokers (1·57 mL per year; 1·00-2·14). Among participants without prevalent lung disease, associations were attenuated but were consistent with the main results. INTERPRETATION: Former smokers and low-intensity current smokers have accelerated lung function decline compared with never-smokers. These results suggest that all levels of smoking exposure are likely to be associated with lasting and progressive lung damage. FUNDING: National Institutes of Health, National Heart Lung and Blood Institute, and US Environmental Protection Agency.


Subject(s)
Ex-Smokers/statistics & numerical data , Lung/physiopathology , Smokers/statistics & numerical data , Smoking/adverse effects , Adult , Aged , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , National Heart, Lung, and Blood Institute (U.S.) , Non-Smokers/statistics & numerical data , Respiratory Physiological Phenomena , Smoking/physiopathology , Spirometry , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...