Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1590, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338121

ABSTRACT

Drug discovery for diseases such as Parkinson's disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson's disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a convolutional deep neural network trained on ImageNet to generate deep embeddings from each image and train machine learning models to detect morphological disease phenotypes. Our platform's robustness and sensitivity allow the detection of individual-specific variation with high fidelity across batches and plate layouts. Lastly, our models confidently separate LRRK2 and sporadic Parkinson's disease lines from healthy controls (receiver operating characteristic area under curve 0.79 (0.08 standard deviation)), supporting the capacity of this platform for complex disease modeling and drug screening applications.


Subject(s)
Deep Learning , Parkinson Disease , Fibroblasts , Humans , Machine Learning , Neural Networks, Computer
2.
Mol Syst Biol ; 16(3): e9174, 2020 03.
Article in English | MEDLINE | ID: mdl-32181581

ABSTRACT

We present IDEA (the Induction Dynamics gene Expression Atlas), a dataset constructed by independently inducing hundreds of transcription factors (TFs) and measuring timecourses of the resulting gene expression responses in budding yeast. Each experiment captures a regulatory cascade connecting a single induced regulator to the genes it causally regulates. We discuss the regulatory cascade of a single TF, Aft1, in detail; however, IDEA contains > 200 TF induction experiments with 20 million individual observations and 100,000 signal-containing dynamic responses. As an application of IDEA, we integrate all timecourses into a whole-cell transcriptional model, which is used to predict and validate multiple new and underappreciated transcriptional regulators. We also find that the magnitudes of coefficients in this model are predictive of genetic interaction profile similarities. In addition to being a resource for exploring regulatory connectivity between TFs and their target genes, our modeling approach shows that combining rapid perturbations of individual genes with genome-scale time-series measurements is an effective strategy for elucidating gene regulatory networks.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Saccharomycetales/genetics , Transcription Factors/genetics , Algorithms , Databases, Genetic , Fungal Proteins/genetics , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL