Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 25(20): 5838-5848, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28943245

ABSTRACT

The small molecule inhibitor acetazolamide (AZM) was conjugated to a set of designed polypeptides and the resulting conjugates were evaluated for their affinity to Human Carbonic Anhydrase II (HCA II) using surface plasmon resonance. The dissociation constant of the AZM-HCA II complex was 38nM and that of the AZM conjugated polypeptide (4-C10L17-AZM) to HCA II was found to be 4nM, an affinity enhancement of a factor of 10 due to polypeptide conjugation. For Human Carbonic Anhydrase IX (HCA IX) the dissociation constant of AZM was 3nM, whereas that of the 4-C10L17-AZM conjugate was 90pM, a 33-fold affinity enhancement. This dramatic affinity increase due to polypeptide conjugation was achieved for a small molecule ligand with an already high affinity to the target protein. This supports the concept that enhancements due to polypeptide conjugation are not limited to small molecule ligands that bind proteins in the mM to µM range but may be used also for nM ligands to provide recognition elements with dissociation constants in the pM range. Evaluations of two HCA IX constructs that do not carry the proteoglycan (PG) domain did not show significant affinity differences between AZM and the polypeptide conjugate, providing evidence that the improved binding of 4-C10L17-AZM to HCA IX emanated from interactions between the polypeptide segment and the PG domain found only in one carbonic anhydrase, HCA IX.


Subject(s)
Acetazolamide/metabolism , Carbonic Anhydrase IX/metabolism , Peptides/metabolism , Acetazolamide/chemistry , Amino Acid Sequence/genetics , Carbonic Anhydrase IX/chemistry , Carbonic Anhydrase IX/genetics , Crystallography, X-Ray , Humans , Molecular Structure , Peptides/chemistry , Peptides/genetics , Protein Binding/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Surface Plasmon Resonance
2.
Org Biomol Chem ; 15(21): 4644-4654, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28513744

ABSTRACT

A high-affinity polypeptide conjugate 4-C25L22-DQ, has been developed for the molecular recognition of the human C-reactive protein, CRP, a well-known inflammation biomarker. CRP is one of the most frequently quantified targets in diagnostic applications and a target in drug development. With the exception of antibodies, most molecular constructs take advantage of the known affinity for CRP of phosphocholine that depends on Ca2+ for its ability to bind. 4-C25L22-DQ which is unrelated to phosphocholine binds in the absence of Ca2+ with a dissociation constant of 760 nM, an order of magnitude lower than that of phosphocholine, the KD of which is 5 µM. The small organic molecule 2-oxo-1,2-dihydroquinoline-8-carboxylic acid (DQ) was designed based on the structural similarities between three hits from a set of compounds selected from a building block collection and evaluated with regards to affinity for CRP by NMR spectroscopy. 4-C25L22-DQ was shown in a competition experiment to bind CRP three orders of magnitude more strongly than DQ itself, and in a pull-down experiment 4-C25L22-DQ was shown to extract CRP from human serum. The development of a robust and phosphocholine-independent recognition element provides unprecedented opportunities in bioanalytical applications in vivo and in vitro under conditions where the concentration of Ca2+ ions is low, or where Ca2+ binding agents such as EDTA or heparin are needed to prevent blood coagulation. The identification from a compound library of a small organic molecule and its conjugation to a small set of polypeptides, none of which were previously known to bind CRP, illustrates a convenient and general route to selective high-affinity binders for proteins with dissociation constants in the µM to nM range for which no small molecule ligands are known.


Subject(s)
C-Reactive Protein/metabolism , Phosphorylcholine/metabolism , Amino Acid Sequence , C-Reactive Protein/chemistry , Drug Design , Humans , Models, Molecular , Protein Conformation
3.
Chembiochem ; 18(14): 1396-1407, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28432776

ABSTRACT

A 42-residue polypeptide conjugated to a small-molecule organic ligand capable of targeting the phosphorylated side chain of Ser15 was shown to bind glycogen phosphorylase a (GPa) with a KD value of 280 nm. The replacement of hydrophobic amino acids by Ala reduced affinities, whereas the incorporation of l-2-aminooctanoic acid (Aoc) increased them. Replacing Nle5, Ile9 and Leu12 by Aoc reduced the KD value from 280 to 27 nm. "Downsizing" the 42-mer to an undecamer gave rise to an affinity for GPa an order of magnitude lower, but the undecamer in which Nle5, Ile9 and Leu12 were replaced by Aoc showed a KD value of 550 nm, comparable with that of the parent 42-mer. The use of Aoc residues offers a convenient route to increased affinity in protein recognition as well as a strategy for the "downsizing" of peptides essentially without loss of affinity. The results show that hydrophobic binding sites can be found on protein surfaces by comparing the affinities of polypeptide conjugates in which Aoc residues replace Nle, Ile, Leu or Phe with those of their unmodified counterparts. Polypeptide conjugates thus provide valuable opportunities for the optimization of peptides and small organic compounds in biotechnology and biomedicine.


Subject(s)
Glycogen Phosphorylase/chemistry , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Binding Sites , Glycogen Phosphorylase/metabolism , Humans , Models, Molecular , Molecular Structure , Peptides/chemical synthesis , Peptides/metabolism , Protein Binding , Surface Properties
4.
Chembiochem ; 18(14): 1408-1414, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28301711

ABSTRACT

The affinity for human serum albumin (HSA) of a series of 2-5 kDa peptides covalently linked to 3,5-bis[[bis(2-pyridylmethyl)amino]methyl]benzoic acid, a dipicolyl chelator with micromolar affinity for Zn2+ , was found by surface plasmon resonance to increase in the presence of 1 µm ZnCl2 at physiological pH. The dependence on polypeptide hydrophobicity was found to be minor, thus suggesting that the conjugates bound to the metal-binding site and not to the fatty-acid-binding site. The affinity of the conjugates increased strongly with the positive charge of the polypeptides, thus implicating the negatively charged protein surface surrounding the metal-binding site. The survival times of the peptides in human serum were extended as a consequence of stronger binding to HSA, thus suggesting that Zn2+ -chelating agents might provide a general route to increased survival time of peptides in serum in therapeutic and diagnostic applications without significantly increasing their molecular weights.


Subject(s)
Benzoates/chemistry , Chelating Agents/chemistry , Peptides/chemistry , Pyridines/chemistry , Serum Albumin/chemistry , Zinc/chemistry , Half-Life , Humans , Hydrophobic and Hydrophilic Interactions , Surface Plasmon Resonance , Time Factors
5.
J Pept Sci ; 19(8): 461-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23813758

ABSTRACT

Intrinsically disordered proteins that exist as unordered monomeric structures in aqueous solution at pH 7 but fold into four-helix bundles upon binding to recognized polypeptide targets have been designed. NMR and CD spectra of the monomeric polypeptides show the hallmarks of unordered structures, whereas in the bound state they are highly helical. Analytical ultracentrifugation data shows that the polypeptides bind to their targets to form exclusively heterodimers at neutral pH. To demonstrate the relationship between binding, folding, and function, a catalytic site for ester hydrolysis was introduced into an unordered and largely inactive monomer, but that was structured and catalytically active in the presence of a specific polypeptide target. Electrostatic interactions between surface-exposed residues inhibited the binding and folding of the monomers at pH 7. Charge-charge repulsion between ionizable amino acids was thus found to be sufficient to disrupt binding between polypeptide chains despite their inherent propensities for structure formation and may be involved in the folding and function of inherently disordered proteins in biology.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Amino Acid Sequence , Catalytic Domain , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Sequence Data , Protein Binding , Protein Engineering , Protein Folding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary
6.
Neuroendocrinology ; 98(1): 16-30, 2013.
Article in English | MEDLINE | ID: mdl-23446227

ABSTRACT

Neuroendocrine tumors (NET) are malignant solid tumors that arise in hormone-secreting tissue of the diffuse neuroendocrine system or endocrine glands. Although traditionally understood to be a rare disease, the incidence and prevalence of NET have increased greatly in the past 3 decades. However, during this time, progress in diagnosis and outcome of NET has generally been modest. In order to achieve improved outcome in NET, a better understanding of NET biology combined with more reliable serum markers and better techniques to identify tumor localization and small lesions are needed. Although some NET biomarkers exist, sensitive and specific markers that predict tumor growth and behavior are generally lacking. In addition, the integration of new molecular imaging technologies in patient diagnosis and follow-up has the potential to enhance care. To discuss developments and issues required to improve diagnostics and management of NET patients, with specific focus on the latest advances in molecular imaging and biomarker science, 17 global leaders in the fields of NET, molecular imaging and biomarker technology gathered to participate in a 2-day meeting hosted by Prof. Kjell Öberg at the University of Uppsala in Sweden. During this time, findings were presented regarding methods with potential prognostic and treatment applications in NET or other types of cancers. This paper describes the symposium presentations and resulting discussions.


Subject(s)
Biomarkers, Tumor/metabolism , Molecular Imaging/trends , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/metabolism , Disease Management , Humans , Molecular Imaging/standards , Neuroendocrine Tumors/therapy , Sweden
7.
Bioconjug Chem ; 24(1): 17-25, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23151063

ABSTRACT

The synthetic tetrapeptide GPRP based on the amino-terminal GPR sequence of the fibrin α-chain binds the D-dimer protein with a dissociation constant K(D) of 25 µM. The D-dimer protein, a well-known biomarker for thrombosis, contains two cross-linked D fragments from the fibrinogen protein formed upon degradation of the fibrin gel, the core component of blood clots. In order to develop a specific high-affinity binder for the D-dimer protein, GPRP was conjugated via an aliphatic spacer to each member of a set of sixteen polypeptides designed for the development of binder molecules for proteins in general. The binders were individually characterized and ranked using surface plasmon resonance (SPR) analysis. The dissociation constant of the complex formed from the D-dimer and 4-D15L8-GPRP labeled with fluorescein was determined by fluorescense titration and found to be 3 nM, an affinity 4 orders of magnitude higher than that of free GPRP. According to SPR analysis, binding was completely inhibited by free GPRP at mM concentrations and the polypeptide conjugate was therefore shown to bind specifically to the binding site of GPRP. Affinities were further enhanced by dimerization of the polypeptide conjugates via a bifunctional linker resulting in dissociation constants that were further decreased (affinities increased) by factors of 2-4. The results suggest an efficient route to specific binders for proteins based on short peptides with affinities that need only to be modest, thus shortening the time of binder development dramatically.


Subject(s)
Fibrin Fibrinogen Degradation Products/metabolism , Oligopeptides/chemistry , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Humans , Models, Molecular , Molecular Sequence Data , Oligopeptides/metabolism , Peptides/metabolism , Protein Binding , Surface Plasmon Resonance
8.
J Pept Sci ; 18(12): 731-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23086900

ABSTRACT

Myeloperoxidase (MPO) is a 150 kD tetrameric heme protein consisting of two heavy chains and two light chains, which is present in neutrophils, white blood cells, at concentrations between 2% and 5% and plays an important role in the innate immune system. The MPO concentration in serum or plasma has been shown to be linked to the risk for cardiovascular diseases, and MPO is considered to be a high potential diagnostic biomarker. To develop a molecule that binds MPO, salicylhydroxamic acid (SHA), a substrate analog inhibitor of MPO with a KD=2 µM, was conjugated to a designed set of 42-residue polypeptide scaffolds via 9- and 11-carbon atom aliphatic spacers to form 20 different protein binder candidates, and their interactions with MPO were evaluated by surface plasmon resonance analysis. The polypeptide conjugate 4C37L34C11SHA was found to bind to MPO with an affinity that could be estimated to have a dissociation constant of around 400 pM, nearly four orders of magnitude higher than that of SHA. Inhibition of binding to MPO by free SHA was observed in competition experiments demonstrating that the binding of the polypeptide conjugate is dominated by the interactions of SHA with the heme cavity. Although still in the future, the discovery of these new synthetic binders for MPO suggests a route to clinical diagnostic tests in vivo or in vitro, independent of antibodies.


Subject(s)
Peptides/chemistry , Peroxidase/chemistry , Salicylamides/chemistry , Amino Acid Sequence , Binding, Competitive , Enzymes, Immobilized/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Protein Binding , Surface Plasmon Resonance
9.
Anal Bioanal Chem ; 404(6-7): 1643-51, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22847475

ABSTRACT

A platform for diagnostic applications showing signal-to-noise ratios that by far surpass those of traditional bioanalytical test formats has been developed. It combines the properties of modified nanocrystalline diamond (NCD) surfaces and those of polyethylene oxide and polypropylene oxide based block copolymers for surface passivation and binder conjugation with a new class of synthetic binders for proteins. The NCD surfaces were fluorine-, hydrogen-, or oxygen-terminated prior to further biofunctionalization and the surface composition was characterized by X-ray photoelectron spectroscopy. In a proof of principle demonstration targeting the C-reactive protein, an ELISA carried out using an F-terminated diamond surface showed a signal-to-noise ratio of 3,900 which compares well to the signal-to-noise of 89 obtained in an antibody-based ELISA on a polystyrene microtiter plate, a standard test format used in most life science laboratories today. The increase in signal-to-noise ratio is to a large extent the result of extremely efficient passivation of the diamond surface. The results suggest that significant improvements can be obtained in standardized test formats using new materials in combination with new types of chemical coatings and receptor molecules.


Subject(s)
Biosensing Techniques/methods , C-Reactive Protein/chemistry , Diamond/chemistry , Biosensing Techniques/instrumentation , Protein Binding , Signal-To-Noise Ratio
10.
J Pept Sci ; 18(4): 261-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22392885

ABSTRACT

An efficient method for the heteroconjugation of biomolecules carrying free amino groups was reported previously, where mixed polyfluorophenyl diesters of dicarboxylic acids with varied aliphatic chain length were shown to be efficient reagents for the conjugation of a variety of model biomolecules. The concept was based on the differential reactivity of the esters towards amines. The concept has now been further optimized, and a 2,6-difluorophenyl-pentafluorophenyl diester combination has been demonstrated to be the most efficient, both with respect to selectivity and to reaction rate. A pentafluorophenyl ester reacts faster with an amino group and requires a weaker base than a 2,6-difluorophenyl ester that requires a stronger base and longer reaction time. With the use of this combination of esters, we obtained considerably shortened reaction times compared with those reported previously, yet still retaining the desired selectivity in heteroconjugation. The increased reactivity of the bifunctional reagent allowed the construction of sophisticated peptide heteroconjugates from peptides, carbohydrates and proteins, showing a wide scope of applicability in the field of assembling functional bioconjugates.


Subject(s)
Cross-Linking Reagents/chemistry , Dicarboxylic Acids/chemistry , Esters/chemistry , Fluorobenzenes/chemistry , Peptides/chemistry , Protein Multimerization , Serum Albumin/chemistry , Cross-Linking Reagents/chemical synthesis , Dicarboxylic Acids/chemical synthesis , Esters/chemical synthesis , Fluorobenzenes/chemical synthesis , Humans
11.
Nano Lett ; 11(12): 5564-73, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22047629

ABSTRACT

Responsive hybrid nanomaterials with well-defined properties are of significant interest for the development of biosensors with additional applications in tissue engineering and drug delivery. Here, we present a detailed characterization using UV-vis spectroscopy and small angle X-ray scattering of a hybrid material comprised of polypeptide-decorated gold nanoparticles with highly controllable assembly properties. The assembly is triggered by a folding-dependent bridging of the particles mediated by the heteroassociation of immobilized helix-loop-helix polypeptides and a complementary nonlinear polypeptide present in solution. The polypeptides are de novo designed to associate and fold into a heterotrimeric complex comprised of two disulfide-linked four-helix bundles. The particles form structured assemblies with a highly defined interparticle gap (4.8±0.4 nm) that correlates to the size of the folded polypeptides. Transitions in particle aggregation dynamics, mass-fractal dimensions and ordering, as a function of particle size and the concentration of the bridging polypeptide, are observed; these have significant effects on the optical properties of the assemblies. The assembly and ordering of the particles are highly complex processes that are affected by a large number of variables including the number of polypeptides bridging the particles and the particle mobility within the aggregates. A fundamental understanding of these processes is of paramount interest for the development of novel hybrid nanomaterials with tunable structural and optical properties and for the optimization of nanoparticle-based colorimetric biodetection strategies.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Protein Folding , Scattering, Small Angle , Spectrophotometry, Ultraviolet , X-Ray Diffraction
12.
Org Biomol Chem ; 9(22): 7697-704, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-21979575

ABSTRACT

The conjugation of polypeptides from a designed set to the small molecule ligand 3,5-bis[[bis(2-pyridylmethyl)amino]methyl]benzoic acid, which in the presence of Zn(2+) ions binds inorganic phosphate, has been shown to provide a polypeptide conjugate that binds α-casein, a multiply phosphorylated protein, with a dissociation constant K(D) of 17 nM. The measured affinity is more than three orders of magnitude higher than that of the small molecule ligand for phosphate and the binding of 500 nM of α-casein was not inhibited by 10 mM phosphate buffer, providing a 2000-fold excess of phosphate ion over protein. The selectivity for phosphoproteins was demonstrated by extraction of α-casein from solutions of various complexity, including milk and human serum spiked with α-casein. In addition to α-casein, ß-casein was also recognized but not ovoalbumin. Conjugation of a polypeptide to the zinc chelating ligand was therefore shown to give rise to dramatically increased affinity and also increased selectivity. A set of polypeptide conjugates is expected to be able to capture a large number of phosphorylated proteins, perhaps all, and in combination with electrophoresis or mass spectrometry become a powerful tool for the monitoring of phosphorylation levels. The presented binder can easily be attached to various types of surfaces; here demonstrated for the case of polystyrene particles. The example of phosphoproteins was selected since posttranslational phosphorylation is of fundamental importance in cell biology due to its role in signaling and therefore of great interest in drug development. The reported concept for binder development is, however, quite general and high-affinity binders can conveniently be developed for a variety of proteins including those with posttranslational modifications for which small molecule recognition elements are available.


Subject(s)
Affinity Labels/chemical synthesis , Benzoates/chemistry , Caseins/analysis , Phosphoproteins/analysis , Staining and Labeling/methods , Affinity Labels/analysis , Affinity Labels/metabolism , Amino Acid Sequence , Animals , Benzoates/metabolism , Binding Sites , Caseins/metabolism , Fluorescein/analysis , Humans , Kinetics , Mass Spectrometry , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/metabolism , Phosphates/chemistry , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Spectrometry, Fluorescence , Zinc/chemistry
13.
Anal Bioanal Chem ; 400(6): 1653-64, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21461620

ABSTRACT

A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.


Subject(s)
Organic Chemicals/chemistry , Peptides/chemistry , Proteins/chemistry , Humans , Models, Molecular , Molecular Structure , Proteins/isolation & purification
15.
Chembiochem ; 12(4): 559-66, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21264993

ABSTRACT

Two binder candidates 4-C37L34-B and 3-C15L8-B from a 16-membered set of 42-residue polypeptide conjugates designed to bind human carbonic anhydrase II (HCAII), were shown to bind HCAII with high affinity in a fluorescence-based screening assay. Two carbonic anhydrase isoforms with 60 % homology exist in human blood with HCAI being present in five- to sevenfold excess over HCAII. The ability of the binders to discriminate between HCAI and HCAII was evaluated with regard to what selectivity could be achieved by the conjugation of polypeptides from a 16-membered set to a small organic molecule that binds both isoforms with similar affinities. The polypeptide conjugate 4-C37L34-B bound HCAII with a K(D) of 17 nM and HCAI with a K(D) of 470 nM, that is, with a 30-fold difference in affinity. The corresponding dissociation constants for the complexes formed from 3-C15L8-B and the two carbonic anhydrases were 60 and 390 nM, respectively. This demonstration of selectivity between two very similar proteins is striking in view of the fact that the molecular weight of each one of the conjugate molecules is little more than 5000, the fold is unordered, and the polypeptide sequences were designed de novo and have no prior relationship to carbonic anhydrases. The results suggest that synthetic polypeptide conjugates can be prepared from organic molecules that are considered to be weak binders with low selectivity, yielding conjugates with properties that make them attractive alternatives to biologically generated binders in biotechnology and biomedicine.


Subject(s)
Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Coumarins/chemistry , Peptides/genetics , Sulfonamides/chemistry , Amino Acid Sequence , Coumarins/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Molecular Structure , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Isoforms/chemistry , Sulfonamides/metabolism , Surface Plasmon Resonance
16.
Biosens Bioelectron ; 25(10): 2302-8, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20418090

ABSTRACT

Herein, we present a new sandwich assay design containing a high affinity polypeptide scaffold as immobilized capture element and an antibody for detection. These polypeptide scaffolds provide a good affinity towards one antigen and can be linked to biosensor surfaces without affecting their binding capabilities. Furthermore, the small peptides are very stable, which allows for regenerating the surface several hundreds of times and thus for reuse of the biosensor. Moreover, these receptors can be synthesized with different affinities towards one antigen, which has been proven by characterizing them using a label-free detection method RIfS (reflectometric interference spectroscopy) for collecting kinetic data. Polypeptide scaffolds with different affinities have been chosen and characterized. Upon these results, sandwich-type assays have been set-up using a fluorescently labelled antibody as detection element. Thereby could be shown, that the working range of the assay can be shifted according to the affinity of the used capturing polypeptide scaffold. The scaffolds with a higher affinity towards the antigen can detect lower concentration, and in contrary, scaffolds with lower affinities can detect higher concentrations. In consequence, using this new sandwich-type assay, we avoid the complex procedure to immobilize antibodies in correct orientation, but simultaneously keep this well-known recognition element in the assay for detection. Furthermore, in addition to all the acknowledged properties of immunoassays, we add the possibility of tuning the working range of assays in distinct manner according to request.


Subject(s)
Biomarkers/analysis , Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Microarray Analysis/instrumentation , Peptides/chemistry , Spectrometry, Fluorescence/instrumentation , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
18.
Small ; 5(21): 2445-52, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19588465

ABSTRACT

A novel strategy is described for the colorimetric sensing of proteins, based on polypeptide-functionalized gold nanoparticles. Recognition is accomplished using a polypeptide sensor scaffold designed to specifically bind to the model analyte, human carbonic anhydrase II (HCAII). The extent of particle aggregation, induced by the Zn(2+)-triggered dimerization and folding of a second polypeptide also present on the surface of the gold nanoparticle, gives a readily detectable colorimetric shift that is dependent on the concentration of the target protein. In the absence of HCAII, particle aggregation results in a major redshift of the plasmon peak, whereas analyte binding prevented the formation of dense aggregates, significantly reducing the magnitude of the redshift. The versatility of the technique is demonstrated using a second model system based on the recognition of a peptide sequence from the tobacco mosaic virus coat protein (TMVP) by a recombinant antibody fragment (Fab57P). Concentrations down to approximately 10 nM and approximately 25 nM are detected for HCAII and Fab57P, respectively. This strategy is proposed as a generic platform for robust and specific protein analysis that can be further developed to monitor a wide range of target proteins.


Subject(s)
Colorimetry , Gold/chemistry , Metal Nanoparticles , Microscopy, Electron, Scanning
19.
Chembiochem ; 9(12): 1975-84, 2008 Aug 11.
Article in English | MEDLINE | ID: mdl-18600814

ABSTRACT

HJ1, a 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle, successfully catalyzes the cleavage of "early stage" DNA model substrates in an aqueous solution at pH 7.0, with a rate enhancement in the hydrolysis of heptyl 4-nitrophenyl phosphate of over three orders of magnitude over that of the imidazole-catalyzed reaction, k(2)(HJ1)/k(2)(Im) = 3135. The second-order rate constant, k(2)(HJ1) was determined to be 1.58x10(-4) M(-1) s(-1). The catalyst successfully assembles residues that in a single elementary reaction step are capable of general-acid and general-base catalysis as well as transition state stabilization and proximity effects. The reactivity achieved with the HJ1 polypeptide, rationally designed to catalyze the hydrolysis of phosphodiesters, is based on two histidine residues flanked by four arginines and two adjacent tyrosine residues, all located on the surface of a helix-loop-helix motif. The introduction of Tyr residues close to the catalytic site improves efficiency, in the cleavage of activated aryl alkyl phosphates as well as less activated dialkyl phosphates. HJ1 is also effective in the cleavage of an RNA-mimic substrate, uridine-3'-2,2,2-trichloroethyl phosphate (leaving group pK(a) = 12.3) with a second-order rate constant of 8.23x10(-4) M(-1) s(-1) in aqueous solution at pH 7.0, some 500 times faster than the reaction catalyzed by imidazole, k(2)(HJ1)/k(2)(Im) = 496.


Subject(s)
Drug Design , Esters/metabolism , Helix-Loop-Helix Motifs , Peptides/chemistry , Peptides/metabolism , Phosphates/metabolism , Amino Acid Sequence , Binding Sites , Biomimetic Materials/metabolism , Catalysis/drug effects , DNA/metabolism , Dimerization , Esters/chemistry , Hydrolysis/drug effects , Hydrophobic and Hydrophilic Interactions , Phosphates/chemistry , Protein Folding , Protein Structure, Quaternary , Salts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...