Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Bioorg Med Chem Lett ; 101: 129652, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38346577

ABSTRACT

Mixed-lineage protein kinase 3 (MLK3) is implicated in several human cancers and neurodegenerative diseases. A series of 3H-imidazo[4,5-b]pyridine derivatives were designed, synthesized and evaluated as novel MLK3 inhibitors. A homology model of MLK3 was developed and all designed compounds were docked to assess their binding pattern and affinity toward the MLK3 active site. Based on this knowledge, we synthesized and experimentally evaluated the designed compounds. Majority of the compounds showed significant inhibition of MLK3 in the enzymatic assay. In particular, compounds 9a, 9e, 9j, 9 k, 12b and 12d exhibited IC50 values of 6, 6, 8, 11, 14 and 14 nM, respectively. Furthermore, compounds 9a, 9e, 9 k and 12b exhibited favorable physicochemical properties among these compounds.


Subject(s)
Mitogen-Activated Protein Kinase Kinase Kinase 11 , Pyridines , Humans , Structure-Activity Relationship , Pyridines/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry
2.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003257

ABSTRACT

The continuous emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with multiple spike (S) protein mutations pose serious threats to current coronavirus disease 2019 (COVID-19) therapies. A comprehensive understanding of the structural stability of SARS-CoV-2 variants is vital for the development of effective therapeutic strategies as it can offer valuable insights into their potential impact on viral infectivity. S protein mediates a virus' attachment to host cells by binding to angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD), and mutations in this protein can affect its stability and binding affinity. We analyzed S protein structural stability in various Omicron subvariants computationally. Notably, the S protein sequences analyzed in this work were obtained directly from our own sample collection. We evaluated the binding free energy between S protein and ACE2 in several complex forms. Additionally, we measured distances between the RBD of each chain in S protein to analyze conformational changes. Unlike most of the prior studies, we analyzed full-length S protein-ACE2 complexes instead of only RBD-ACE2 complexes. Omicron subvariants including BA.1, BA.2, BA.2.12.1, BA.4/BA.5, BA.2.75, BA.2.75_K147E, BA.4.6 and BA.4.6_N658S showed enhanced stability compared to wild type, potentially due to distinct S protein mutations. Among them, BA.2.75 and BA.4.6_N658S exhibited the highest and lowest level of stability, respectively.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Comput Struct Biotechnol J ; 21: 4683-4696, 2023.
Article in English | MEDLINE | ID: mdl-37841326

ABSTRACT

Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS.

4.
Comput Struct Biotechnol J ; 21: 425-431, 2023.
Article in English | MEDLINE | ID: mdl-36618985

ABSTRACT

Several diverse proteins possess similar binding sites. Protein binding site comparison provides valuable insights for the drug discovery and development. Binding site similarities are useful in understanding polypharmacology, identifying potential off-targets and repurposing of known drugs. Many binding site analysis and comparison methods are available today, however, these methods may not be adequate to explain variation in the activity of a drug or a small molecule against a number of similar proteins. Water molecules surrounding the protein surface contribute to structure and function of proteins. Water molecules form diverse types of hydrogen-bonded cyclic water-ring networks known as topological water networks (TWNs). Analysis of TWNs in binding site of proteins may improve understanding of the characteristics of binding sites. We propose TWN-based residue encoding (TWN-RENCOD), a novel binding site comparison method which compares the aqueous environment in binding sites of similar proteins. As compared to other existing methods, results obtained using our method correlated better with differences in wide range of activity of a known drug (Sunitinib) against nine different protein kinases (KIT, PDGFRA, VEGFR2, PHKG2, ITK, HPK1, MST3, PAK6 and CDK2).

5.
Biomol Ther (Seoul) ; 29(2): 234-247, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33223513

ABSTRACT

We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

6.
Int J Mol Sci ; 21(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957634

ABSTRACT

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in cell regulation. Abnormal expression and activity of DYRK1A contribute to numerous human malignancies, Down syndrome, and Alzheimer's disease. Notably, DYRK1A has been proposed as a potential therapeutic target for the treatment of diabetes because of its key role in pancreatic ß-cell proliferation. Consequently, DYRK1A is an attractive drug target for a variety of diseases. Here, we report the identification of several DYRK1A inhibitors using our in-house topological water network-based approach. All inhibitors were further verified by in vitro assay.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/chemistry , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Computational Chemistry , Humans , Ligands , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Small Molecule Libraries , Dyrk Kinases
7.
ACS Sens ; 5(7): 1872-1876, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32610895

ABSTRACT

Remarkable variation between cell-free and cellular measurements of enzyme activity triggered the unmet need to develop tools for monitoring enzyme activity in living cells. Such tools will advance our understanding of the biological functions of enzymes and their potential impact on drug discovery. We report in this study a universal assay for monitoring ATP-generating enzymes in living cells using a self-assembled Tb3+ complex probe. Modulation of the rheological properties of cell culture media enabled shifting the lifetime of the Tb3+ complex in the presence of ATP from micro-to-millisecond range. Based on the response of the Tb3+ complex to ATP, cellular assays for 5 ATP-generating enzymes were developed. Remarkably, assessment of the activity of these enzymes in living cells is made possible for the first time. The pyruvate kinase M2 (PKM2) assay has been optimized for high-throughput screening (HTS) and further implemented in the identification of novel scaffolds as PKM2 inhibitors.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Lanthanoid Series Elements , Adenosine Triphosphate
8.
Molecules ; 25(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512802

ABSTRACT

Human ether-a-go-go-related gene (hERG) potassium channel blockage by small molecules may cause severe cardiac side effects. Thus, it is crucial to screen compounds for activity on the hERG channels early in the drug discovery process. In this study, we collected 5299 hERG inhibitors with diverse chemical structures from a number of sources. Based on this dataset, we evaluated different machine learning (ML) and deep learning (DL) algorithms using various integer and binary type fingerprints. A training set of 3991 compounds was used to develop quantitative structure-activity relationship (QSAR) models. The performance of the developed models was evaluated using a test set of 998 compounds. Models were further validated using external set 1 (263 compounds) and external set 2 (47 compounds). Overall, models with integer type fingerprints showed better performance than models with no fingerprints, converted binary type fingerprints or original binary type fingerprints. Comparison of ML and DL algorithms revealed that integer type fingerprints are suitable for ML, whereas binary type fingerprints are suitable for DL. The outcomes of this study indicate that the rational selection of fingerprints is important for hERG blocker prediction.


Subject(s)
Algorithms , Drug Discovery , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Machine Learning , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Quantitative Structure-Activity Relationship , Computer Simulation , Humans , Models, Molecular
9.
Int J Mol Sci ; 21(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046006

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a widespread form of dementia. Aggregated forms of the amyloid ß-peptide (Aß) are identified as a toxic species responsible for neuronal damage in AD. Extensive research has been conducted to reveal the aggregation mechanism of Aß. However, the structure of pathological aggregates and the mechanism of aggregation are not well understood. Recently, experimental studies have confirmed that the α-sheet structure in Aß drives aggregation and toxicity in AD. However, how the α-sheet structure is formed in Aß and how it contributes to Aß aggregation remains elusive. In the present study, molecular dynamics simulations suggest that Aß adopts the α-strand conformation by peptide-plane flipping. Multiple α-strands interact through hydrogen bonding to form α-sheets. This structure acts as a nucleus that initiates and promotes aggregation and fibrillation of Aß. Our findings are supported by previous experimental as well as theoretical studies. This study provides valuable structural insights for the design of anti-AD drugs exploiting the α-strand/α-sheet structure.


Subject(s)
Amyloid beta-Peptides/chemistry , Molecular Dynamics Simulation , Amino Acid Motifs , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Humans , Hydrogen Bonding , Mutation , Protein Binding , Protein Folding
10.
Molecules ; 24(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374894

ABSTRACT

Autotaxin (ATX) is a potential drug target that is associated with inflammatory diseases and various cancers. In our previous studies, we have designed several inhibitors targeting ATX using computational and experimental approaches. Here, we have analyzed topological water networks (TWNs) in the binding pocket of ATX. TWN analysis revealed a pharmacophoric site inside the pocket. We designed and synthesized compounds considering the identified pharmacophoric site. Furthermore, we performed biological experiments to determine their ATX inhibitory activities. High potency of the designed compounds supports the predictions of the TWN analysis.


Subject(s)
Drug Design , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/chemistry , Structure-Activity Relationship , Humans , Inflammation/drug therapy , Molecular Docking Simulation , Neoplasms/drug therapy , Phosphodiesterase Inhibitors/therapeutic use , Phosphoric Diester Hydrolases/drug effects , Water/chemistry
11.
Molecules ; 24(14)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336667

ABSTRACT

Water molecules play a key role in protein stability, folding, function and ligand binding. Protein hydration has been studied using free energy perturbation algorithms. However, the study of protein hydration without free energy calculation is also an active field of research. Accordingly, topological water network (TWN) analysis has been carried out instead of free energy calculation in the present work to investigate hydration of proteins. Water networks around 20 amino acids in the aqueous solution were explored through molecular dynamics (MD) simulations. These simulation results were compared with experimental observations. Water molecules from the protein data bank structures showed TWN patterns similar to MD simulations. This work revealed that TWNs are effected by the surrounding environment. TWNs could provide valuable clues about the environment around amino acid residues in the proteins. The findings from this study could be exploited for TWN-based drug discovery and development.


Subject(s)
Amino Acids/chemistry , Water/chemistry , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Reproducibility of Results , Structure-Activity Relationship
12.
Exp Mol Med ; 51(2): 1-18, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755593

ABSTRACT

We extracted 15 pterosin derivatives from Pteridium aquilinum that inhibited ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) and cholinesterases involved in the pathogenesis of Alzheimer's disease (AD). (2R)-Pterosin B inhibited BACE1, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with an IC50 of 29.6, 16.2 and 48.1 µM, respectively. The Ki values and binding energies (kcal/mol) between pterosins and BACE1, AChE, and BChE corresponded to the respective IC50 values. (2R)-Pterosin B was a noncompetitive inhibitor against human BACE1 and BChE as well as a mixed-type inhibitor against AChE, binding to the active sites of the corresponding enzymes. Molecular docking simulation of mixed-type and noncompetitive inhibitors for BACE1, AChE, and BChE indicated novel binding site-directed inhibition of the enzymes by pterosins and the structure-activity relationship. (2R)-Pterosin B exhibited a strong BBB permeability with an effective permeability (Pe) of 60.3×10-6 cm/s on PAMPA-BBB. (2R)-Pterosin B and (2R,3 R)-pteroside C significantly decreased the secretion of Aß peptides from neuroblastoma cells that overexpressed human ß-amyloid precursor protein at 500 µM. Conclusively, our study suggested that several pterosins are potential scaffolds for multitarget-directed ligands (MTDLs) for AD therapeutics.


Subject(s)
Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation , Humans , Ligands , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Permeability , Recombinant Proteins , Structure-Activity Relationship
13.
Sci Rep ; 9(1): 59, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635607

ABSTRACT

The α-synuclein is a major component of amyloid fibrils found in Lewy bodies, the characteristic intracellular proteinaceous deposits which are pathological hallmarks of neurodegenerative diseases such as Parkinson's disease (PD) and dementia. It is an intrinsically disordered protein that may undergo dramatic structural changes to form amyloid fibrils. Aggregation process from α-synuclein monomers to amyloid fibrils through oligomeric intermediates is considered as the disease-causative toxic mechanism. However, mechanism underlying aggregation is not well-known despite several attempts. To characterize the mechanism, we have explored the effects of pH and temperature on the structural properties of wild-type and mutant α-synuclein using molecular dynamics (MD) simulation technique. MD studies suggested that amyloid fibrils can grow by monomer. Conformational transformation of the natively unfolded protein into partially folded intermediate could be accountable for aggregation and fibrillation. An intermediate α-strand was observed in the hydrophobic non-amyloid-ß component (NAC) region of α-synuclein that could proceed to α-sheet and initiate early assembly events. Water network around the intermediate was analyzed to determine its influence on the α-strand structure. Findings of this study provide novel insights into possible mechanism of α-synuclein aggregation and promising neuroprotective strategy that could aid alleviate PD and its symptoms.

14.
J Biomol Struct Dyn ; 37(8): 2165-2178, 2019 May.
Article in English | MEDLINE | ID: mdl-30044205

ABSTRACT

Mesenchymal-epithelial transition factor (c-Met) is a member of receptor tyrosine kinase. It involves in various cellular signaling pathways which includes proliferation, motility, migration, and invasion. Over-expression of c-Met has been reported in various cancers. Hence, it is an ideal therapeutic target for cancer. The main objective of the study is to identify crucial residues involved in the inhibition of c-Met kinase and to design a series of potent imidazo [4,5-b] pyrazine derivatives as c-Met inhibitors. Docking was used to identify important active site residues involved in the inhibition of c-Met kinase which was further validated by 100 ns of molecular dynamics simulation and free energy calculation using molecular mechanics generalized born surface area. Furthermore, binding energy decomposition identified that residues Tyr1230, Met1211, Asp1222, Tyr1159, Met1160, Val1092, Ala1108, and Leu1157 contributed favorably to the binding stability of compound 32. Receptor-guided Comparative Molecular Field Analysis (CoMFA) (q2 = 0.751, NOC = 6, r2 = 0.933) and Comparative Molecular Similarity Indices Analysis (COMSIA) (q2 = 0.744, NOC = 6, r2 = 0.950) models were generated based on the docked conformation of the most active compound 32. The robustness of these models was tested using various validation techniques and found to be predictive. The results of CoMFA and CoMSIA contour maps exposed the regions favorable to enhance the activity. Based on this information, 27 novel c-Met inhibitors were designed. These designed compounds exhibited potent activity than the most active compound of the existing dataset. Communicated by Ramaswamy H. Sarma.


Subject(s)
Drug Design , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/chemistry , Quantitative Structure-Activity Relationship , Inhibitory Concentration 50 , Molecular Docking Simulation , Proto-Oncogene Proteins c-met/metabolism , Thermodynamics
15.
Molecules ; 23(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501110

ABSTRACT

Protein kinases are deeply involved in immune-related diseases and various cancers. They are a potential target for structure-based drug discovery, since the general structure and characteristics of kinase domains are relatively well-known. However, the ATP binding sites in protein kinases, which serve as target sites, are highly conserved, and thus it is difficult to develop selective kinase inhibitors. To resolve this problem, we performed molecular dynamics simulations on 26 kinases in the aqueous solution, and analyzed topological water networks (TWNs) in their ATP binding sites. Repositioning of a known kinase inhibitor in the ATP binding sites of kinases that exhibited a TWN similar to interleukin-1 receptor-associated kinase 4 (IRAK4) allowed us to identify a hit molecule. Another hit molecule was obtained from a commercial chemical library using pharmacophore-based virtual screening and molecular docking approaches. Pharmacophoric features of the hit molecules were hybridized to design a novel compound that inhibited IRAK4 at low nanomolar levels in the in vitro assay.


Subject(s)
Drug Design , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Water/chemistry , Binding Sites , Drug Evaluation, Preclinical , Drug Repositioning , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Staurosporine/chemistry , Staurosporine/pharmacology
16.
Molecules ; 23(3)2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29498658

ABSTRACT

Sauchinone, an active lignan isolated from the aerial parts of Saururus chinensis (Saururaceae), exhibits anti-inflammatory, anti-obesity, anti-hyperglycemic, and anti-hepatic steatosis effects. As herb-drug interaction (HDI) through cytochrome P450s (CYPs)-mediated metabolism limits clinical application of herbs and drugs in combination, this study sought to explore the enzyme kinetics of sauchinone towards CYP inhibition in in vitro human liver microsomes (HLMs) and in vivo mice studies and computational molecular docking analysis. In in vitro HLMs, sauchinone reversibly inhibited CYP2B6, 2C19, 2E1, and 3A4 activities in non-competitive modes, showing inhibition constant (Ki) values of 14.3, 16.8, 41.7, and 6.84 µM, respectively. Also, sauchinone time-dependently inhibited CYP2B6, 2E1 and 3A4 activities in vitro HLMs. Molecular docking study showed that sauchinone could be bound to a few key amino acid residues in the active site of CYP2B6, 2C19, 2E1, and 3A4. When sibutramine, clopidogrel, or chlorzoxazone was co-administered with sauchinone to mice, the systemic exposure of each drug was increased compared to that without sauchinone, because sauchinone reduced the metabolic clearance of each drug. In conclusion, when sauchinone was co-treated with drugs metabolized via CYP2B6, 2C19, 2E1, or 3A4, sauchinone-drug interactions occurred because sauchinone inhibited the CYP-mediated metabolic activities.


Subject(s)
Benzopyrans/chemistry , Cytochrome P-450 CYP2B6/chemistry , Cytochrome P-450 CYP2C19/chemistry , Cytochrome P-450 CYP2E1/chemistry , Cytochrome P-450 CYP3A/chemistry , Dioxoles/chemistry , Herb-Drug Interactions , Saururaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Anti-Obesity Agents/pharmacology , Benzopyrans/isolation & purification , Benzopyrans/pharmacology , Binding Sites , Catalytic Domain , Chlorzoxazone/chemistry , Chlorzoxazone/pharmacology , Clopidogrel , Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/isolation & purification , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Dioxoles/isolation & purification , Dioxoles/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Kinetics , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Molecular Docking Simulation , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Ticlopidine/analogs & derivatives , Ticlopidine/chemistry , Ticlopidine/pharmacology
17.
Eur J Med Chem ; 148: 397-409, 2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29477073

ABSTRACT

Autotaxin (ATX) is a potential target for the treatment of various cancers. A new series of ATX inhibitors was rationally designed and synthesized based on our previous study. Biological evaluation and structure-activity relationship (SAR) of this series are discussed. Among fourteen synthesized derivatives, six compounds (2, 3, 4, 12, 13 and 14) exhibited enhanced ATX inhibitory activities with IC50 values in the low nanomolar range. Molecular interactions of all the synthesized compounds within the active site of ATX were studied through molecular docking studies. Herein, we describe our lead optimization efforts that resulted in the identification of a potent ATX inhibitor (compound 4 with IC50 = 1.23 nM, FS-3 and 2.18 nM, bis-pNPP). Furthermore, pharmacokinetic properties of this most promising compound are profiled.


Subject(s)
Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/chemistry , Antineoplastic Agents/chemistry , Catalytic Domain , Drug Discovery , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/pharmacology , Protein Binding , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 27(17): 4156-4164, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28743508

ABSTRACT

The autotaxin-lysophophatidic acid (ATX-LPA) signaling pathway is involved in several human diseases such as cancer, autoimmune diseases, inflammatory diseases neurodegenerative diseases and fibrotic diseases. Herein, a series of 4-phenyl-thiazole based compounds was designed and synthesized. Compounds were evaluated for their ATX inhibitory activity using FS-3 and human plasma assays. In the FS-3 assay, compounds 20 and 21 significantly inhibited the ATX at low nanomolar level (IC50=2.99 and 2.19nM, respectively). Inhibitory activity of 21 was found to be slightly better than PF-8380 (IC50=2.80nM), which is one of the most potent ATX inhibitors reported till date. Furthermore, 21 displayed higher potency (IC50=14.99nM) than the first clinical ATX inhibitor, GLPG1690 (IC50=242.00nM) in the human plasma assay. Molecular docking studies were carried out to explore the binding pattern of newly synthesized compounds within active site of ATX. Docking studies suggested the putative binding mode of the novel compounds. Good ATX inhibitory activity of 21 was attributed to the hydrogen bonding interactions with Asn230, Trp275 and active site water molecules; electrostatic interaction with catalytic zinc ion and hydrophobic interactions with amino acids of the hydrophobic pocket.


Subject(s)
Drug Design , Molecular Docking Simulation , Phosphoric Diester Hydrolases/metabolism , Thiazoles/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
19.
BMC Syst Biol ; 11(Suppl 2): 6, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28361711

ABSTRACT

BACKGROUND: Bruton tyrosine kinase (Btk) plays an important role in B-cell development, differentiation, and signaling. It is also found be in involved in male immunodeficiency disease such as X-linked agammaglobulinemia (XLA). Btk is considered as a potential therapeutic target for treating autoimmune diseases and hematological malignancies. RESULTS: In this work, a combined molecular modeling study was performed on a series of thieno [3,2-c] pyridine-4-amine derivatives as Btk inhibitors. Receptor-guided COMFA (q 2 = 0.574, NOC = 3, r 2 = 0.924) and COMSIA (q 2 = 0.646, NOC = 6, r 2 = 0.971) models were generated based on the docked conformation of the most active compound 26. All the developed models were tested for robustness using various validation techniques. Furthermore, a 5-ns molecular dynamics (MD) simulation and binding free energy calculations were carried out to determine the binding modes of the inhibitors and to identify crucial interacting residues. The rationality and stability of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM/PBSA method showed the importance of the van der Waals interaction. CONCLUSIONS: A good correlation between the MD results, docking studies, and the contour map analysis were observed. The study has identified the key amino acid residues in Btk binding pocket. The results from this study can provide some insights into the development of potent, novel Btk inhibitors.


Subject(s)
Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Agammaglobulinaemia Tyrosine Kinase , Drug Discovery , Protein Conformation , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Thermodynamics
20.
Curr Comput Aided Drug Des ; 12(4): 302-313, 2016.
Article in English | MEDLINE | ID: mdl-27585602

ABSTRACT

BACKGROUND: Checkpoint kinase 1 (Chk1) has emerged as a potential therapeutic target for design and development of novel anticancer drugs. OBJECTIVE: Herein, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses on a series of diazacarbazoles to design potent Chk1 inhibitors. METHODS: 3D-QSAR models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Docking studies were performed using AutoDock. RESULTS: The best CoMFA and CoMSIA models exhibited cross-validated correlation coefficient (q2) values of 0.631 and 0.585, and non-cross-validated correlation coefficient (r2) values of 0.933 and 0.900, respectively. CoMFA and CoMSIA models showed reasonable external predictabilities (r2 pred) of 0.672 and 0.513, respectively. CONCLUSION: A satisfactory performance in the various internal and external validation techniques indicated the reliability and robustness of the best model. Docking studies were performed to explore the binding mode of inhibitors inside the active site of Chk1. Molecular docking revealed that hydrogen bond interactions with Lys38, Glu85 and Cys87 are essential for Chk1 inhibitory activity. The binding interaction patterns observed during docking studies were complementary to 3D-QSAR results. Information obtained from the contour map analysis was utilized to design novel potent Chk1 inhibitors. Their activities and binding affinities were predicted using the derived model and docking studies. Designed inhibitors were proposed as potential candidates for experimental synthesis.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Drug Design , Molecular Docking Simulation , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Binding Sites , Carbazoles/chemistry , Carbazoles/metabolism , Catalytic Domain , Checkpoint Kinase 1/chemistry , Checkpoint Kinase 1/metabolism , Hydrogen Bonding , Least-Squares Analysis , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...