Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681783

ABSTRACT

Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/drug effects , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chromones/pharmacology , Chromones/therapeutic use , Drug Screening Assays, Antitumor , Flavones/pharmacology , Flavones/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Morpholines/pharmacology , Morpholines/therapeutic use , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-pim-1/genetics , Tumor Cells, Cultured
2.
Stem Cells Int ; 2018: 9628289, 2018.
Article in English | MEDLINE | ID: mdl-29535786

ABSTRACT

Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed.

3.
BMC Cancer ; 13: 617, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24380367

ABSTRACT

BACKGROUND: Resistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient's prognosis. Beside promoter methylation of the O6-methylguanine-DNA-methyltransferase (MGMT) gene the efflux transporters ABCB1 and ABCG2 have been suggested as pivotal factors contributing to drug resistance, but the methylation of ABCB1 and ABCG2 has not been assessed before in GBM. METHODS: Therefore, we evaluated the proportion and prognostic significance of promoter methylation of MGMT, ABCB1 and ABCG2 in 64 GBM patient samples using pyrosequencing technology. Further, the single nucleotide polymorphisms MGMT C-56 T (rs16906252), ABCB1 C3435T (rs1045642) and ABCG2 C421A (rs2231142) were determined using the restriction fragment length polymorphism method (RFLP). To study a correlation between promoter methylation and gene expression, we analyzed MGMT, ABCB1 and ABCG2 expression in 20 glioblastoma and 7 non-neoplastic brain samples. RESULTS: Despite a significantly increased MGMT and ABCB1 promoter methylation in GBM tissue, multivariate regression analysis revealed no significant association between overall survival of glioblastoma patients and MGMT or ABCB1 promoter methylation. However, a significant negative correlation between promoter methylation and expression could be identified for MGMT but not for ABCB1 and ABCG2. Furthermore, MGMT promoter methylation was significantly associated with the genotypes of the MGMT C-56 T polymorphism showing a higher methylation level in the T allele bearing GBM. CONCLUSIONS: In summary, the data of this study confirm the previous published relation of MGMT promoter methylation and gene expression, but argue for no pivotal role of MGMT, ABCB1 and ABCG2 promoter methylation in GBM patients' survival.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , Brain Neoplasms/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Glioblastoma/genetics , Neoplasm Proteins/genetics , Tumor Suppressor Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Adult , Aged , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/therapy , DNA Methylation , Female , Gene Expression , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL