Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(5): 3525-3536, 2023 May.
Article in English | MEDLINE | ID: mdl-36894419

ABSTRACT

Objectives were to evaluate differences in the uterine and serum metabolomes associated with metritis in dairy cows. Vaginal discharge was evaluated using a Metricheck device (Simcro) at 5, 7, and 11 d in milk (DIM; herd 1) or 4, 6, 8, 10, and 12 DIM (herd 2). Cows with reddish or brownish, watery, and fetid discharge were diagnosed with metritis (n = 24). Cows with metritis were paired with herdmates without metritis (i.e., clear mucous vaginal discharge or clear lochia with ≤50% of pus) based on DIM and parity (n = 24). Day of metritis diagnosis was considered study d 0. All cows diagnosed with metritis received antimicrobial therapy. The metabolome of uterine lavage collected on d 0 and 5, and serum samples collected on d 0 were evaluated using untargeted gas chromatography time-of-flight mass spectrometry. Normalized data were subjected to multivariate canonical analysis of population using the MultBiplotR and MixOmics packages in R Studio. Univariate analyses including t-test, principal component analyses, partial least squares discriminant analyses, and pathway analyses were conducted using Metaboanalyst. The uterine metabolome differed between cows with and without metritis on d 0. Differences in the uterine metabolome associated with metritis on d 0 were related to the metabolism of butanoate, amino acids (i.e., glycine, serine, threonine, alanine, aspartate, and glutamate), glycolysis and gluconeogenesis, and the tricarboxylic acid cycle. No differences in the serum metabolome were observed between cows diagnosed with metritis and counterparts without metritis on d 0. Similarly, no differences in uterine metabolome were observed between cows with metritis and counterparts not diagnosed with metritis on d 5. These results indicate that the establishment of metritis in dairy cows is associated with local disturbances in amino acid, lipid, and carbohydrate metabolism in the uterus. The lack of differences in the uterine metabolome on d 5 indicates that processes implicated with the disease are reestablished by d 5 after diagnosis and treatment.


Subject(s)
Cattle Diseases , Endometritis , Pelvic Inflammatory Disease , Vaginal Discharge , Pregnancy , Female , Cattle , Animals , Lactation , Endometritis/veterinary , Endometritis/diagnosis , Uterus , Pelvic Inflammatory Disease/veterinary , Vaginal Discharge/veterinary , Metabolome , Cattle Diseases/diagnosis , Postpartum Period
2.
Parasit Vectors ; 8: 566, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26515286

ABSTRACT

Unfortunately, the original version of this article [1] contained an error. Figure 1 in the original article, corresponded to the first coinertia analysis that was carried out with no data on the procyclin PE repeats for the T. brucei brucei strains. After including these data, the coinertia analysis was modified both in the directionality of the arrows in the Y Hyperspace and in the biplot generated by the interaction of the two coinertia axes. The modified coinertia analysis is included in Fig. 1.

3.
Parasit Vectors ; 8: 536, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26467019

ABSTRACT

BACKGROUND: Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum is widely distributed throughout the world and constitutes an important limitation for the production of animal protein. T. evansi and T. equiperdum are morphologically indistinguishable parasites that evolved from a common ancestor but acquired important biological differences, including host range, mode of transmission, distribution, clinical symptoms and pathogenicity. At a molecular level, T. evansi is characterized by the complete loss of the maxicircles of the kinetoplastic DNA, while T. equiperdum has retained maxicircle fragments similar to those present in T. brucei. T. evansi causes the disease known as Surra, Derrengadera or "mal de cadeiras", while T. equiperdum is the etiological agent of dourine or "mal du coit", characterized by venereal transmission and white patches in the genitalia. METHODS: Nine Venezuelan Trypanosoma spp. isolates, from horse, donkey or capybara were genotyped and classified using microsatellite analyses and maxicircle genes. The variables from the microsatellite data and the Procyclin PE repeats matrices were combined using the Hill-Smith method and compared to a group of T. evansi, T. equiperdum and T. brucei reference strains from South America, Asia and Africa using Coinertia analysis. Four maxicircle genes (cytb, cox1, a6 and nd8) were amplified by PCRfrom TeAp-N/D1 and TeGu-N/D1, the two Venezuelan isolates that grouped with the T. equiperdum STIB841/OVI strain. These maxicircle sequences were analyzed by nucleotide BLAST and aligned toorthologous genes from the Trypanozoon subgenus by MUSCLE tools. Phylogenetic trees were constructed using Maximum Parsimony (MP) and Maximum Likelihood (ML) with the MEGA5.1® software. RESULTS: We characterized microsatellite markers and Procyclin PE repeats of nine Venezuelan Trypanosoma spp. isolates with various degrees of virulence in a mouse model, and compared them to a panel of T. evansi and T. equiperdum reference strains. Coinertia analysis of the combined repeats and previously reported T. brucei brucei microsatellite genotypes revealed three distinct groups. Seven of the Venezuelan isolates grouped with globally distributed T. evansi strains, while TeAp-N/D1 and TeGu-N/D1 strains clustered in a separate group with the T. equiperdum STIB841/OVI strain isolated in South Africa. A third group included T. brucei brucei, two strains previously classified as T. evansi (GX and TC) and one as T. equiperdum (BoTat-1.1). Four maxicircle genes, Cytochrome b, Cythocrome Oxidase subunit 1, ATP synthase subunit 6 and NADH dehydrogenase subunit 8, were identified in the two Venezuelan strains clustering with the T. equiperdum STIB841/OVI strain. Phylogenetic analysis of the cox1 gene sequences further separated these two Venezuelan T. equiperdum strains: TeAp-N/D1 grouped with T. equiperdum strain STIB818 and T. brucei brucei, and TeGu-N/D1 with the T. equiperdum STIB841/OVI strain. CONCLUSION: Based on the Coinertia analysis and maxicircle gene sequence phylogeny, TeAp-N/D1 and TeGu-N/D1 constitute the first confirmed T. equiperdum strains described from Latin America.


Subject(s)
DNA, Kinetoplast , Genes, Protozoan , Genetic Variation , Genotype , Microsatellite Repeats , Trypanosoma/classification , Trypanosoma/genetics , Animals , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Equidae/parasitology , Horses/parasitology , Molecular Sequence Data , Phylogeny , Rodentia/parasitology , Sequence Analysis, DNA , Sequence Homology , Trypanosoma/isolation & purification , Venezuela
SELECTION OF CITATIONS
SEARCH DETAIL
...