Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(51): 59714-59721, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38095074

ABSTRACT

Engineering the response to external signals in mechanically switchable hydrogels is important to promote smart materials applications. However, comparably little attention has focused on embedded precision mechanisms for autonomous nonlinear response in mechanical profiles in hydrogels, and we lack understanding of how the behavior from the molecular scale transduces to the macroscale. Here, we design a nonlinear stress-strain response into hydrogels by engineering sacrificial DNA hairpin loops into model network hydrogels formed from star-shaped building blocks. We characterize the force-extension response of single DNA hairpins and are able to describe how the specific topology influences the nonlinear mechanical behavior at different length scales. For this purpose, we utilize force spectroscopy as well as microscopic and macroscopic deformation tests. This study contributes to a better understanding of designing nonlinear strain-adaptive features into hydrogel materials.


Subject(s)
Hydrogels , Smart Materials , Hydrogels/chemistry , Mechanical Phenomena , DNA/chemistry
2.
J Am Chem Soc ; 145(48): 26086-26094, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37992133

ABSTRACT

Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.


Subject(s)
Peptides , Water , Water/chemistry , Peptides/chemistry , Organophosphates , Amino Acids/chemistry , Phosphates/chemistry , Esters
3.
Langmuir ; 39(44): 15553-15562, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37877163

ABSTRACT

Ion-mediated attraction between DNA and mica plays a crucial role in biotechnological applications and molecular imaging. Here, we combine molecular dynamics simulations and single-molecule atomic force microscopy experiments to characterize the detachment forces of single-stranded DNA at mica surfaces mediated by the metal cations Li+, Na+, K+, Cs+, Mg2+, and Ca2+. Ion-specific adsorption at the mica/water interface compensates (Li+ and Na+) or overcompensates (K+, Cs+, Mg2+, and Ca2+) the bare negative surface charge of mica. In addition, direct and water-mediated contacts are formed between the ions, the phosphate oxygens of DNA, and mica. The different contact types give rise to low- and high-force pathways and a broad distribution of detachment forces. Weakly hydrated ions, such as Cs+ and water-mediated contacts, lead to low detachment forces and high mobility of the DNA on the surface. Direct ion-DNA or ion-surface contacts lead to significantly higher forces. The comprehensive view gained from our combined approach allows us to highlight the most promising cations for imaging in physiological conditions: K+, which overcompensates the negative mica charge and induces long-ranged attractions. Mg2+ and Ca2+, which form a few specific and long-lived contacts to bind DNA with high affinity.


Subject(s)
Aluminum Silicates , DNA , Cations , Sodium , Water
4.
Nano Lett ; 23(10): 4111-4119, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36948207

ABSTRACT

The effect of an externally applied directional force on molecular friction is so far poorly understood. Here, we study the force-driven dissociation of the ligand-protein complex biotin-streptavidin and identify anisotropic friction as a not yet described type of molecular friction. Using AFM-based stereographic single molecule force spectroscopy and targeted molecular dynamics simulations, we find that the rupture force and friction for biotin-streptavidin vary with the pulling angle. This observation holds true for friction extracted from Kramers' rate expression and by dissipation-corrected targeted molecular dynamics simulations based on Jarzynski's identity. We rule out ligand solvation and protein-internal friction as sources of the angle-dependent friction. Instead, we observe a heterogeneity in free energy barriers along an experimentally uncontrolled orientation parameter, which increases the rupture force variance and therefore the overall friction. We anticipate that anisotropic friction needs to be accounted for in a complete understanding of friction in biomolecular dynamics and anisotropic mechanical environments.


Subject(s)
Biotin , Molecular Dynamics Simulation , Biotin/chemistry , Streptavidin/chemistry , Friction , Ligands , Microscopy, Atomic Force
5.
Chem Sci ; 13(19): 5734-5740, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35694336

ABSTRACT

A wealth of chemical bonds and polymers have been studied with single-molecule force spectroscopy, usually by applying a force perpendicular to the anchoring surface. However, the direction-dependence of the bond strength lacks fundamental understanding. Here we establish stereographic force spectroscopy to study the single-bond strength for various pulling angles. Surprisingly, we find that the apparent bond strength increases with increasing pulling angle relative to the anchoring surface normal, indicating a sturdy mechanical anisotropy of a chemical bond. This finding can be rationalized by a fixed pathway for the rupture of the bond, resulting in an effective projection of the applied pulling force onto a nearly fixed rupture direction. Our study is fundamental for the molecular understanding of the role of the direction of force application in molecular adhesion and friction. It is also a prerequisite for the nanoscale tailoring of the anisotropic strength of bottom-up designed materials.

6.
Acta Biomater ; 146: 274-283, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35487427

ABSTRACT

Osteoarthritis (OA) is a joint disease affecting millions of patients worldwide. During OA onset and progression, the articular cartilage is destroyed, but the underlying complex mechanisms remain unclear. Here, we uncover changes in the thickness of collagen fibers and their composition at the onset of OA. For articular cartilage explants from knee joints of OA patients, we find that type I collagen-rich fibrocartilage-like tissue was formed in macroscopically intact cartilage, distant from OA lesions. Importantly, the number of thick fibers (>100 nm) has decreased early in the disease, followed by complete absence of thick fibers in advanced OA. We have obtained these results by a combination of high-resolution atomic force microscopy imaging under near-native conditions, immunofluorescence, scanning electron microscopy and a fluorescence-based classification of the superficial chondrocyte spatial organization. Taken together, our data suggests that the loss of tissue functionality in early OA cartilage is caused by a reduction of thick type II collagen fibers, likely due to the formation of type I collagen-rich fibrocartilage, followed by the development of focal defects in later OA stages. We anticipate that such an integrative characterization will be very beneficial for an in-depth understanding of other native biological tissues and the development of sustainable biomaterials. STATEMENT OF SIGNIFICANCE: In early osteoarthritis (OA) the cartilage appears macroscopically intact. However, this study demonstrates that the collagen network already changes in early OA by collagen fiber thinning and the formation of fibrocartilage-like tissue. Both nanoscopic deficiencies already occur in macroscopically intact regions of the human knee joint and are likely connected to processes that result in a weakened extracellular matrix. This study enhances the understanding of earliest progressive cartilage degeneration in the absence of external damage. The results suggest a determination of the mean collagen fiber thickness as a new target for the detection of early OA and a regulation of type I collagen synthesis as a new path for OA treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Cartilage, Articular/pathology , Chondrocytes/physiology , Collagen Type I , Collagen Type II , Humans , Osteoarthritis/pathology
7.
Nanoscale ; 14(10): 3768-3776, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35171194

ABSTRACT

Multivalent interactions play a leading role in biological processes such as the inhibition of inflammation or virus internalization. The multivalent interactions show enhanced strength and better selectivity compared to monovalent interactions, but they are much less understood due to their complexity. Here, we detect molecular interactions in the range of a few piconewtons to several nanonewtons and correlate them with the formation and subsequent breaking of one or several bonds and assign these bonds. This becomes possible by performing atomic force microcopy (AFM)-based single molecule force spectroscopy of a multifunctional polymer covalently attached to an AFM cantilever tip on a substrate bound polymer layer of the multifunctional polymer. Varying the pH value and the crosslinking state of the polymer layer, we find that bonds of intermediate strength (non-covalent), like coordination bonds, give the highest multivalent bond strength, even outperforming strong (covalent) bonds. At the same time, covalent bonds enhance the polymer layer density, increasing in particular the number of non-covalent bonds. In summary, we can show that the key for the design of stable and durable polymer coatings is to provide a variety of multivalent interactions and to keep the number of non-covalent interactions at a high level.

8.
J Biomed Mater Res B Appl Biomater ; 110(5): 1165-1177, 2022 05.
Article in English | MEDLINE | ID: mdl-34904786

ABSTRACT

The development of multifunctional biomaterials as both tissue regeneration and drug delivery devices is currently a major focus in biomedical research. Tannic Acid (TA), a naturally occurring plant polyphenol, displays unique medicinal abilities as an antioxidant, an antibiotic, and as an anticancer agent. TA has applications in biomaterials acting as a crosslinker in polymer hydrogels improving thermal stability and mechanical properties. We have developed injectable cell seeded collagen beads crosslinked with TA for breast reconstruction and anticancer activity following lumpectomy. This study determined the longevity of the bead implants by establishing a degradation time line and TA release profile in vivo. Beads crosslinked with 0.1% TA and 1% TA were compared to observe the differences in TA concentration on degradation and release. We found collagen/TA beads degrade at similar rates in vivo, yet are resistant to complete degradation after 16 weeks. TA is released over time in vivo through diffusion and cellular activity. Changes in mechanical properties in collagen/TA beads before implantation to after 8 weeks in vivo also indicate loss of TA over a longer period of time. Elastic moduli decreased uniformly in both 0.1% and 1% TA beads. This study establishes that collagen/TA materials can act as a drug delivery system, rapidly releasing TA within the first week following implantation. However, the beads retain TA long term allowing them to resist degradation and remain in situ acting as a cell scaffold and tissue filler. This confirms its potential use as an anticancer and minimally invasive breast reconstructive device following lumpectomy.


Subject(s)
Hydrogels , Tannins , Biocompatible Materials , Collagen/pharmacology , Tannins/pharmacology , Wound Healing
9.
Macromol Rapid Commun ; 43(3): e2100632, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34752668

ABSTRACT

In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.


Subject(s)
Nanopores , Membranes , Polymerization , Polymers , Solvents
10.
Acta Biomater ; 126: 315-325, 2021 05.
Article in English | MEDLINE | ID: mdl-33753314

ABSTRACT

Atomic force microscopy (AFM) has become a powerful tool for the characterization of materials at the nanoscale. Nevertheless, its application to hierarchical biological tissue like cartilage is still limited. One reason is that such samples are usually millimeters in size, while the AFM delivers much more localized information. Here a combination of AFM and fluorescence microscopy is presented where features on a millimeter sized tissue sample are selected by fluorescence microscopy on the micrometer scale and then mapped down to nanometer precision by AFM under native conditions. This served us to show that local changes in the organization of fluorescent stained cells, a marker for early osteoarthritis, correlate with a significant local reduction of the elastic modulus, local thinning of the collagen fibers, and a roughening of the articular surface. This approach is not only relevant for cartilage, but in general for the characterization of native biological tissue from the macro- to the nanoscale. STATEMENT OF SIGNIFICANCE: Different length scales have to be studied to understand the function and dysfunction of hierarchically organized biomaterials or tissues. Here we combine a highly stable AFM with fluorescence microscopy and precisely motorized movement to correlate micro- and nanoscopic properties of articular cartilage on a millimeter sized sample under native conditions. This is necessary for unraveling the relationship between microscale organization of chondrocytes, micrometer scale changes in articular cartilage properties and nanoscale organization of collagen (including D-banding). We anticipate that such studies pave the way for a guided design of hierarchical biomaterials.


Subject(s)
Cartilage, Articular , Osteoarthritis , Chondrocytes , Elastic Modulus , Humans , Microscopy, Atomic Force
11.
J Mol Biol ; 433(2): 166717, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33220262

ABSTRACT

Heat shock protein 90 (Hsp90) is a molecular chaperone that assists protein folding in an Adenosine triphosphate (ATP)-dependent way. Hsp90 has been reported to interact with Alzheimers disease associated amyloid-ß (Aß) peptides and to suppress toxic oligomer- and fibril formation. However, the mechanism remains largely unclear. Here we use a combination of atomic force microscopy (AFM) imaging, circular dichroism (CD) spectroscopy and biochemical analysis to quantify this interaction and put forward a microscopic picture including rate constants for the different transitions towards fibrillation. We show that Hsp90 binds to Aß40 monomers weakly but inhibits Aß40 from growing into fibrils at substoichiometric concentrations. ATP impedes this interaction, presumably by modulating Hsp90's conformational dynamics and reducing its hydrophobic surface. Altogether, these results might indicate alternative ways to prevent Aß40 fibrillation by manipulating chaperones that are already abundant in the brain.


Subject(s)
Adenosine Triphosphate/chemistry , Amyloid beta-Peptides/chemistry , Amyloid/chemistry , HSP90 Heat-Shock Proteins/chemistry , Peptide Fragments/chemistry , Adenosine Triphosphate/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Models, Molecular , Peptide Fragments/metabolism , Protein Aggregates , Protein Binding , Protein Conformation , Recombinant Proteins , Spectrum Analysis , Structure-Activity Relationship
12.
J Vis Exp ; (157)2020 03 16.
Article in English | MEDLINE | ID: mdl-32225151

ABSTRACT

Atomic force microscopy (AFM)-based single molecule force spectroscopy is an ideal tool for investigating the interactions between a single polymer and surfaces. For a true single molecule experiment, covalent attachment of the probe molecule is essential because only then can hundreds of force-extension traces with one and the same single molecule be obtained. Many traces are in turn necessary to prove that a single molecule alone is probed. Additionally, passivation is crucial for preventing unwanted interactions between the single probe molecule and the AFM cantilever tip as well as between the AFM cantilever tip and the underlying surface. The functionalization protocol presented here is reliable and can easily be applied to a variety of polymers. Characteristic single molecule events (i.e., stretches and plateaus) are detected in the force-extension traces. From these events, physical parameters such as stretching force, desorption force and desorption length can be obtained. This is particularly important for the precise investigation of stimuli-responsive systems at the single molecule level. As exemplary systems poly(ethylene glycol) (PEG), poly(N-isopropylacrylamide) (PNiPAM) and polystyrene (PS) are stretched and desorbed from SiOx (for PEG and PNiPAM) and from hydrophobic self-assembled monolayer surfaces (for PS) in aqueous environment.


Subject(s)
Microscopy, Atomic Force/methods , Nanotechnology/methods , Surface Properties
13.
Colloids Surf B Biointerfaces ; 187: 110614, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31753616

ABSTRACT

In the human body, mucin glycoproteins efficiently reduce friction between tissues and thereby protect the mucosa from mechanical damage. Mucin lubricity is closely related to their molecular structure: it has been demonstrated previously that the hydrophobic termini of mucins critically contribute to their lubricity. If and how intrinsic sources of negative charge in mucins, e.g., sulfated glycans and sialic acid residues, are relevant for the tribological behavior of mucin solutions has, however, not been addressed yet. In this manuscript, we show that the removal of either sialic acid or sulfate groups, which comprise only a minor amount of the total molecular weight, from MUC5B drastically reduces its lubricity. For MUC5AC solutions, however, this effect only occurs once mucin-associated DNA is removed as well. We find that neither the hydration state nor the average conformation of mucins adsorbed onto hydrophilic or hydrophobic surfaces is affected by the removal of anionic sugars. Instead, our data suggests that a loss of anionic sugars mainly influences the dynamic adsorption process of mucins onto both hydrophilic and hydrophobic surfaces.


Subject(s)
Lubrication , Mucins/chemistry , Polysaccharides/chemistry , Adsorption , Animals , Anions , Graphite/chemistry , Hydrophobic and Hydrophilic Interactions , N-Acetylneuraminic Acid/chemistry , Protein Conformation , Solutions , Sulfates/chemistry , Swine , Water/chemistry
14.
J Am Chem Soc ; 141(29): 11603-11613, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31240903

ABSTRACT

The response of switchable polymer blends and coatings to temperature variation is important for the development of high-performance materials. Although this has been well studied for bulk materials, a proper understanding at the molecular level, in particular for high stretching forces, is still lacking. Here we investigate the molecular details of the temperature-dependent elastic response of two widely used water-soluble polymers, namely, polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNiPAM) with a combined approach using atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) experiments and molecular dynamics (MD) simulations. SMFS became possible by the covalent attachment of long and defined single polymers featuring a functional end group. Most interestingly, varying the temperature produces contrasting effects for PEG and PNiPAM. Surprising as these results might occur at first sight, they can be understood with the help of MD simulations in explicit water. We find that hydration is widely underestimated for the mechanics of macromolecules and that a polymer chain has competing energetic and entropic elastic components. We propose to use the temperature dependence to quantify the energetic behavior for high stretching forces. This fundamental understanding of temperature-dependent single polymer stretching response might lead to innovations like fast switchable polymer blends and coatings with polymer chains that act antagonistically.

15.
Langmuir ; 30(15): 4351-7, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24679005

ABSTRACT

Several applications require strong noncovalent adhesion of polymers to substrates. Graft and branched polymers have proven superior to linear polymers, but the molecular mechanism is still unclear. Here, this question is addressed on the single molecule level with an atomic force microscopy (AFM) based method. It is determined how the presence of side chains and their molecular architecture influence the adhesion and the mobility of polymers on solid substrates. Surprisingly, the adhesion of mobile polymers cannot significantly be improved by side chains or their architecture. Only for immobile polymers a significantly higher maximum rupture force for graft, bottle-brush, and branched polymers compared to linear chains is measured. Our results suggest that a combination of polymer architecture and strong molecular bonds is necessary to increase the polymer-surface contact area. An increased contact area together with intrachain cohesion (e.g., by entanglements) leads to improved polymer adhesion. These findings may prove useful for the design of stable polymer coatings.


Subject(s)
Polymers/chemistry , Adsorption , Microscopy, Atomic Force , Surface Properties
16.
ACS Appl Mater Interfaces ; 5(13): 6300-6, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23738613

ABSTRACT

Polymer coatings are frequently utilized to control and modify substrate properties. The performance of the coatings is often determined by the first polymer layers between the substrate and the bulk polymer material, which are termed interphase. Standard methods have failed to completely characterize this interphase, because its properties change significantly over a few nanometers. Here we determine the spatially resolved adhesion properties of the interphase in polyelectrolyte multilayers (PEMs) by desorbing a single polymer covalently bound to an atomic force microscope cantilever tip from PEMs with varying thickness. We show that the adhesion properties of the first few layers (up to three double layers) is dominated by the surface potential of the substrate, while thicker PEMs are controlled by cohesion in between the PEM polymers. For cohesion, the local film conformation is the crucial parameter. This finding is generalized by utilizing oligoelectrolyte multilayer (OEM) as coatings and both hydrophilic and hydrophobic polymers as polymeric force sensors.

18.
J Am Chem Soc ; 134(48): 19628-38, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23101566

ABSTRACT

The force-induced desorption of single peptide chains from mixed OH/CH(3)-terminated self-assembled monolayers is studied in closely matched molecular dynamics simulations and atomic force microscopy experiments with the goal to gain microscopic understanding of the transition between peptide adsorption and adsorption resistance as the surface contact angle is varied. In both simulations and experiments, the surfaces become adsorption resistant against hydrophilic as well as hydrophobic peptides when their contact angle decreases below θ ≈ 50°-60°, thus confirming the so-called Berg limit established in the context of protein and cell adsorption. Entropy/enthalpy decomposition of the simulation results reveals that the key discriminator between the adsorption of different residues on a hydrophobic monolayer is of entropic nature and thus is suggested to be linked to the hydrophobic effect. By pushing a polyalanine peptide onto a polar surface, simulations reveal that the peptide adsorption resistance is caused by the strongly bound water hydration layer and characterized by the simultaneous gain of both total entropy in the system and total number of hydrogen bonds between water, peptide, and surface. This mechanistic insight into peptide adsorption resistance might help to refine design principles for anti-fouling surfaces.


Subject(s)
Molecular Dynamics Simulation , Peptides/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Surface Properties , Water/chemistry
19.
Small ; 5(24): 2864-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19882687

ABSTRACT

A method based on atomic force microscopy is used to delineate the properties that determine single-molecule adhesion onto solid substrates in aqueous environment. Hydrophobicity as well as electrical properties of the substrate and the polymer are varied. In addition, the influence of the solvent composition, in particular the effect of ions, on the molecular adhesion at the solid-liquid interface is studied. Surprisingly, the polymer and surface-related properties account for only small changes in adhesion force, while dissolved ions show a much larger effect. These results point towards the energy of solvation as the most important contribution to adhesion for a wide variety of polymers and substrate materials.


Subject(s)
Biosensing Techniques/instrumentation , Micromanipulation/instrumentation , Microscopy, Atomic Force/instrumentation , Molecular Probe Techniques/instrumentation , Polyamines/chemistry , Silk/chemistry , Adhesiveness , Adsorption , Equipment Design , Equipment Failure Analysis , Surface Properties , Tensile Strength , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...