Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 17(2): e14392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380951

ABSTRACT

Biopreservation refers to the use of natural or controlled microbial single strains or consortia, and/or their metabolites such as short-chain carboxylic acids (SCCA), to improve the shelf-life of foods. This study aimed at establishing a novel Lactobacillaceae-driven bioprocess that led to the production of the SCCA propionate through the cross-feeding on 1,2-propanediol (1,2-PD) derived from the deoxyhexoses rhamnose or fucose. When grown as single cultures in Hungate tubes, strains of Lacticaseibacillus rhamnosus preferred fucose over rhamnose and produced 1,2-PD in addition to lactate, acetate, and formate, while Limosilactobacillus reuteri metabolized 1,2-PD into propionate, propanol and propanal. Loigolactobacillus coryniformis used fucose to produce 1,2-PD and only formed propionate when supplied with 1,2-PD. Fermentates collected from batch fermentations in bioreactor using two-strain consortia (L. rhamnosus and L. reuteri) or fed-batch fermentations of single strain cultures of L. coryniformis with rhamnose contained mixtures of SCCA consisting of mainly lactate and acetate and also propionate. Synthetic mixtures that contained SCCA at concentrations present in the fermentates were more antimicrobial against Salmonella enterica if propionate was present. Together, this study (i) demonstrates the potential of single strains and two-strain consortia to produce propionate in the presence of deoxyhexoses extending the fermentation metabolite profile of Lactobacillaceae, and (ii) emphasizes the potential of applying propionate-containing fermentates as biopreservatives.


Subject(s)
Lactobacillaceae , Propionates , Propionates/metabolism , Lactobacillaceae/metabolism , Rhamnose/metabolism , Fucose , Fermentation , Acetates , Lactates
2.
J Sci Food Agric ; 101(10): 4256-4265, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33421116

ABSTRACT

BACKGROUND: In recent years the use of high-pressure processing (HPP) of fruit products has steadily increased due to its antimicrobial effectiveness and the retention of nutritional and quality attributes compared to conventional thermal technologies. Edible coatings are already being used to enhance the quality of minimally processed fruits. Thus, apple cubes (AC) and alginate-vanillin-coated apple cubes (AVAC) were subjected to HPP (400 MPa/5 min/35 °C). The microbiological and physicochemical parameters were evaluated and the bioactive compounds were monitored before and after HPP of apple cubes. Also, an in vitro gastrointestinal digestion (GID) was conducted. RESULTS: HPP left L. monocytogenes counts below the detection limit (2 log UFC g-1 ), regardless of the presence of coating. For E. coli, HPP + active coating showed a synergism affording the greatest reduction (>5 log) for AVAC-HPP. Firmness was maintained in AVAC-HPP samples, while AC-HPP samples suffered reductions of 35%. Colour attributes were also better retained in AVAC-HPP samples. In general, HPP led to a decrease in phenolic compounds. Regarding the effects of GID, vanillin-based active coating exerted a protective effect on some phenolics. Thus, p-coumaroylquinic acid concentration was maintained for AVAC and AVAC-HPP during GID. Epigallocatechin, the compound with the highest concentration in apple cubes, increased for AVAC (106%) and AVAC-HPP (57%). Also, phloridzin concentration increased for AVAC-HPP (17%). At the end of GID, procyanidin B1 and epigallocatechin were the main phenolic compounds for all samples, AVAC showing the highest concentration. CONCLUSIONS: This work demonstrates that the combined application of HPP and active coatings on apple cubes could be used to obtain a safe and good-quality product. © 2021 Society of Chemical Industry.


Subject(s)
Food Preservation/methods , Food Preservatives/pharmacology , Fruit/microbiology , Malus/chemistry , Phenols/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Food Preservation/instrumentation , Fruit/chemistry , Malus/microbiology , Nutritive Value
3.
Food Res Int ; 122: 653-660, 2019 08.
Article in English | MEDLINE | ID: mdl-31229124

ABSTRACT

Minimally processed fruits are an alternative to dairy products to deliver probiotics. Bio-protection against several factors that affect their viability has been proposed in the food industry. In this study, probiotic Lactobacillus rhamnosus CECT 8361 was added to alginate-based coatings enriched with inulin and oligofructose and applied on fresh-blueberries. Probiotic viability, microbiological, physicochemical and sensory quality parameters of blueberries were monitored during 21 days of refrigerated storage. Also, L. rhamnosus CECT 8361 was tested for its antagonistic effect against inoculated Listeria innocua and E. coli O157:H7. Advantageously, prebiotic compounds allowed improving probiotic viability with counts above 6.2 log CFU/g for the entire period. Native microbiota counts remained under safe levels. Overall visual quality, odor and flavor were acceptable up to day 14 of storage. Regarding antimicrobial activity, L. rhamnosus CECT 8361 was able to reduce L. innocua counts by 1.7 log in inoculated blueberries. These results encourage further implementation of new fruit-based foods with multifunctional properties.


Subject(s)
Alginates/chemistry , Blueberry Plants , Edible Films , Fruit/microbiology , Functional Food , Lactobacillus/growth & development , Oligosaccharides/pharmacology , Probiotics , Food Handling , Food Microbiology , Inulin , Lactobacillus/drug effects , Lacticaseibacillus rhamnosus/physiology , Prebiotics , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...