Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Neurochem Res ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551797

ABSTRACT

Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.

2.
IBRO Neurosci Rep ; 15: 242-251, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37841088

ABSTRACT

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social interaction deficits and repetitive/stereotyped behaviors. Its prevalence is increasing, affecting one in 36 children in the United States. The valproic acid (VPA) induced animal model of ASD is a reliable method for investigating cellular, molecular, and behavioral aspects related to the disorder. Trans-Resveratrol (RSV), a polyphenol with anti-inflammatory and antioxidant effects studied in various diseases, has recently demonstrated the ability to prevent cellular, molecular, sensory, and social deficits in the VPA model. In this study, we examined the effects of prenatal exposure to VPA and the potential preventive effects of RSV on the offspring. Method: We monitored gestational weight from embryonic day 6.5 until 18.5 and assessed the onset of developmental milestones and morphometric parameters in litters. The generalized estimating equations (GEE) were used to analyze longitudinal data. Results: Exposure to VPA during rat pregnancy resulted in abnormal weight gain fold-changes on embryonic days 13.5 and 18.5, followed by fewer animals per litter. Additionally, we discovered a positive correlation between weight variation during E15.5-E18.5 and the number of rat pups in the VPA group. Conclusion: VPA exposure led to slight length deficiencies and delays in the onset of developmental milestones. Interestingly, the prenatal RSV treatment not only prevented most of these delays but also led to the early onset of certain milestones and improved morphometric characteristics in the offspring. In summary, our findings suggest that RSV may have potential as a therapeutic intervention to protect against the negative effects of prenatal VPA exposure, highlighting its importance in future studies of prenatal neurodevelopmental disorders.

3.
Front Immunol ; 13: 874064, 2022.
Article in English | MEDLINE | ID: mdl-35757754

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterised by stereotyped behaviours, specific interests, and impaired communication skills. Elevated levels of pro-inflammatory cytokines, such as interleukin-17A (IL-17A or IL-17), have been implicated as part of immune alterations that may contribute to this outcome. In this context, rodent models have helped elucidate the role of T-cell activation and IL-17 secretion in the pathogenesis of ASD. Regarding the preclinical findings, the data available is contradictory in offspring but not in the pregnant dams, pointing to IL-17 as one of the main drivers of altered behaviour in some models ASD, whilst there are no alterations described in IL-17 levels in others. To address this gap in the literature, a systematic review of altered IL-17 levels in rodent models of ASD was conducted. In total, 28 studies that explored IL-17 levels were included and observed that this cytokine was generally increased among the different models of ASD. The data compiled in this review can help the choice of animal models to study the role of cytokines in the development of ASD, seeking a parallel with immune alterations observed in individuals with this condition. Systematic Review Registration: PROSPERO, identifier CRD42022306558.


Subject(s)
Autism Spectrum Disorder , Interleukin-17 , Animals , Cytokines , Female , Pregnancy , Rodentia
4.
Front Immunol ; 13: 870577, 2022.
Article in English | MEDLINE | ID: mdl-35693812

ABSTRACT

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with few medication options. Bumetanide, an FDA-approved diuretic, has been proposed as a viable candidate to treat core symptoms of ASD, however, neither the brain region related to its effect nor the cell-specific mechanism(s) is clear. The availability of nanoparticles provides a viable way to identify pharmacological mechanisms for use in ASD. Here, we found that treatment with bumetanide, in a systemic and medial prefrontal cortex (mPFC) region-specific way, attenuated social deficits in BTBR mice. Furthermore, using poly (ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(bumetanide)], we showed that the administration of NP(bumetanide) in a mPFC region-specific way also alleviated the social deficits of BTBR mice. Mechanistically, the behavioral effect of NP(bumetanide) was dependent on selective microglia-specific targeting in the mPFC. Pharmacological depletion of microglia significantly reduced the effect of nanoencapsulation and depletion of microglia alone did not improve the social deficits in BTBR mice. These findings suggest the potential therapeutic capabilities of nanotechnology for ASD, as well as the relevant link between bumetanide and immune cells.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/drug therapy , Brain , Bumetanide/pharmacology , Bumetanide/therapeutic use , Disease Models, Animal , Mice , Mice, Inbred Strains
5.
Front Cell Dev Biol ; 10: 795384, 2022.
Article in English | MEDLINE | ID: mdl-35155424

ABSTRACT

Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring's nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship.

6.
Behav Brain Res ; 418: 113629, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34656692

ABSTRACT

Mice homozygous for the nude mutation (Foxn1nu) are hairless and exhibit congenital dysgenesis of the thymic epithelium, resulting in a primary immunodeficiency of mature T-cells, and have been used for decades in research with tumour grafts. Early studies have already demonstrated social behaviour impairments and central nervous system (CNS) alterations in these animals, but did not address the complex interplay between CNS, immune system and behavioural alterations. Here we investigate the impact of T-cell immunodeficiency on behaviours relevant to the study of neurodevelopmental and neuropsychiatric disorders. Moreover, we aimed to characterise in a multidisciplinary manner the alterations related to those findings, through evaluation of the excitatory/inhibitory synaptic proteins, cytokines expression and biological spectrum signature of different biomolecules in nude mice CNS. We demonstrate that BALB/c nude mice display sociability impairments, a complex pattern of repetitive behaviours and higher sensitivity to thermal nociception. These animals also have a reduced IFN-γ gene expression in the prefrontal cortex and an absence of T-cells in meningeal tissue, both known modulators of social behaviour. Furthermore, excitatory synaptic protein PSD-95 immunoreactivity was also reduced in the prefrontal cortex, suggesting an intricate involvement of social behaviour related mechanisms. Lastly, employing biospectroscopy analysis, we have demonstrated that BALB/c nude mice have a different CNS spectrochemical signature compared to their heterozygous littermates. Altogether, our results show a comprehensive behavioural analysis of BALB/c nude mice and potential neuroimmunological influences involved with the observed alterations.


Subject(s)
Mental Disorders/immunology , Mutation/genetics , Neurodevelopmental Disorders/immunology , T-Lymphocytes/immunology , Animals , Mice , Mice, Inbred BALB C , Mice, Nude
7.
Clin Exp Immunol ; 206(3): 325-345, 2021 12.
Article in English | MEDLINE | ID: mdl-34596237

ABSTRACT

Since the first studies of the nervous system by the Nobel laureates Camillo Golgi and Santiago Ramon y Cajal using simple dyes and conventional light microscopes, microscopy has come a long way to the most recent techniques that make it possible to perform images in live cells and animals in health and disease. Many pathological conditions of the central nervous system have already been linked to inflammatory responses. In this scenario, several available markers and techniques can help imaging and unveil the neuroinflammatory process. Moreover, microscopy imaging techniques have become even more necessary to validate the large quantity of data generated in the era of 'omics'. This review aims to highlight how to assess neuroinflammation by using microscopy as a tool to provide specific details about the cell's architecture during neuroinflammatory conditions. First, we describe specific markers that have been used in light microscopy studies and that are widely applied to unravel and describe neuroinflammatory mechanisms in distinct conditions. Then, we discuss some important methodologies that facilitate the imaging of these markers, such as immunohistochemistry and immunofluorescence techniques. Emphasis will be given to studies using two-photon microscopy, an approach that revolutionized the real-time assessment of neuroinflammatory processes. Finally, some studies integrating omics with microscopy will be presented. The fusion of these techniques is developing, but the high amount of data generated from these applications will certainly improve comprehension of the molecular mechanisms involved in neuroinflammation.


Subject(s)
Central Nervous System/diagnostic imaging , Microscopy, Fluorescence/methods , Neuroinflammatory Diseases/diagnostic imaging , Optical Imaging/methods , Fluorescent Antibody Technique/methods , Humans , Immunohistochemistry/methods , Neuroimaging/methods
8.
Int J Dev Neurosci ; 81(7): 579-604, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34196408

ABSTRACT

Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.


Subject(s)
Antioxidants/pharmacology , Aquaporin 4/metabolism , Autistic Disorder/metabolism , Blood-Brain Barrier/drug effects , Brain Edema/prevention & control , Resveratrol/pharmacology , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Female , Male , Permeability/drug effects , Rats , Rats, Wistar
9.
Int J Dev Neurosci ; 81(7): 545-578, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34240460

ABSTRACT

Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.


Subject(s)
Gene-Environment Interaction , Mental Disorders/etiology , Neurodevelopmental Disorders/etiology , Transcription Factors/genetics , Animals , Humans , Mental Disorders/genetics , Neurodevelopmental Disorders/genetics , Risk Factors
10.
Brain Res ; 1768: 147593, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34331907

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in both communication and social interaction, besides repetitive or stereotyped behavior. Although the etiology is unknown, environmental factors such as valproic acid (VPA) increase the risk of ASD onset. Resveratrol (RSV), a neuroprotective molecule, has been shown to counteract the effects of intrauterine exposure to VPA. We aimed to evaluate histological parameters related to hippocampal morphology and to the distribution of parvalbumin- (PV), calbindin- (CB), and somatostatin-positive (SOM) interneurons sub-populations, in addition to evaluate the total/phosphorylation levels of PTEN, AKT, GSK3ß and total CK2 in the animal model of autism induced by VPA, as well as addressing the potential protective effect of RSV. On postnatal day 120, histological analysis showed a loss in total neurons in the dentate gyrus (DG) and decreased CB+ neurons in DG and CA1 in VPA animals, both prevented by RSV. In addition, PV+ neurons were diminished in CA1, CA2, and CA3, and SOM+ were interestingly increased in DG (prevented by RSV) and decreased in CA1 and CA2. A hippocampal lesion similar to sclerosis was also observed in the samples from the VPA group. Besides that, VPA reduced AKT and PTEN immunocontent, and VPA increased CK2 immunocontent. Thus, this work demonstrated long-term effects of prenatal exposure to ASD in different sub-populations of interneurons, structural damage of hippocampus, and also alteration in proteins associated with pivotal cell signaling pathways, highlighting the role of RSV as a tool for understanding the pathophysiology of ASD.


Subject(s)
Autism Spectrum Disorder/drug therapy , Interneurons/metabolism , Resveratrol/pharmacology , Animals , Autism Spectrum Disorder/metabolism , Behavior, Animal/drug effects , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/metabolism , Interneurons/drug effects , Male , Neurons/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Rats, Wistar , Resveratrol/metabolism , Social Behavior , Stereotyped Behavior/drug effects , Valproic Acid/pharmacology
11.
J Neuroinflammation ; 18(1): 60, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632243

ABSTRACT

BACKGROUND: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1ß, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and ß-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.


Subject(s)
Brain/immunology , Prenatal Exposure Delayed Effects/immunology , Sepsis/immunology , Animals , Behavior, Animal , Brain/metabolism , Cognitive Dysfunction/etiology , Female , Inflammation , Mice , Motor Activity/physiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Sepsis/complications , Synapses/metabolism
12.
Neuropharmacology ; 167: 107930, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31904357

ABSTRACT

Autism spectrum disorder (ASD) is characterized by deficits in communication and social interaction, restricted interests, and stereotyped behavior. Environmental factors, such as prenatal exposure to valproic acid (VPA), may contribute to the increased risk of ASD. Since disturbed functioning of the purinergic signaling system has been associated with the onset of ASD and used as a potential therapeutic target for ASD in both clinical and preclinical studies, we analyzed the effects of suramin, a non-selective purinergic antagonist, on behavioral, molecular and immunological in an animal model of autism induced by prenatal exposure to VPA. Treatment with suramin (20 mg/kg, intraperitoneal) restored sociability in the three-chamber apparatus and decreased anxiety measured by elevated plus maze apparatus, but had no impact on decreased reciprocal social interactions or higher nociceptive threshold in VPA rats. Suramin treatment did not affect VPA-induced upregulation of P2X4 and P2Y2 receptor expression in the hippocampus, and P2X4 receptor expression in the medial prefrontal cortex, but normalized an increased level of interleukin 6 (IL-6). Our results suggest an important role of purinergic signaling modulation in behavioral, molecular, and immunological aberrations described in VPA model, and indicate that the purinergic signaling system might be a potential target for pharmacotherapy in preclinical studies of ASD.


Subject(s)
Autistic Disorder/drug therapy , Disease Models, Animal , Prenatal Exposure Delayed Effects/drug therapy , Purinergic Antagonists/administration & dosage , Receptors, Purinergic , Valproic Acid/toxicity , Animals , Anticonvulsants/toxicity , Autistic Disorder/chemically induced , Autistic Disorder/metabolism , Brain/drug effects , Brain/metabolism , Female , Locomotion/drug effects , Locomotion/physiology , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Rats , Receptors, Purinergic/metabolism , Suramin/administration & dosage
13.
Behav Brain Res ; 364: 11-18, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30682436

ABSTRACT

Impairments in social behaviour are a defining feature of autism spectrum disorder (ASD). Individuals with ASD also usually present some difficulty to recognize or understand another person's feelings. Therefore, it is possible that altered empathy processing could hinder typical social interaction in ASD. Recently, robust paradigms confirmed that rodents show primordial forms of empathy-like behaviour. Therefore, in this work, we used one of these new protocols to test pro-social behaviour in the rat model of autism induced by Valproic Acid (VPA). We also evaluated possible beneficial effects of Resveratrol, since it can prevent social deficits in the VPA model. Rats were tested on their ability to open a restrainer to release a trapped conspecific. Exposure to VPA precludes the timely manifestation of this empathy-like behaviour, but does not affect its continuation after its first expression. We also found a significant correlation between average speed during the first day of test and becoming an Opener. Similarly, rats able to open the restrainer on the first day had an increased likelihood of repeating this behaviour in the later days of the testing programme. We did not find any protective effects of Resveratrol. Further investigation of empathy-like behaviour in the VPA model and in other models of autism could help to clarify the behavioural and neural processes underpinning the basic aspects of empathy alterations in autistic individuals.


Subject(s)
Autism Spectrum Disorder/physiopathology , Empathy/physiology , Animals , Autism Spectrum Disorder/chemically induced , Disease Models, Animal , Female , Interpersonal Relations , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Wistar , Resveratrol/pharmacology , Social Behavior , Valproic Acid/adverse effects , Valproic Acid/pharmacology
14.
Neuroimmunomodulation ; 25(5-6): 285-299, 2018.
Article in English | MEDLINE | ID: mdl-30157484

ABSTRACT

Autism spectrum disorder (ASD) is a highly prevalent developmental disorder characterized by deficits in communication and social interaction and in stereotyped or repetitive behaviors. Besides the classical behavioral dyad, several comorbidities are frequently present in patients with ASD, such as anxiety, epilepsy, sleep disturbances, and gastrointestinal tract dysfunction. Although the etiology of ASD remains unclear, there is supporting evidence for the involvement of both genetic and environmental factors. Valproic acid (VPA) is an anticonvulsant and mood stabilizer that, when used during the gestational period, increases the risk of ASD in the offspring. The animal model of autism induced by prenatal exposure to VPA demonstrates important structural and behavioral features that can be observed in individuals with autism; it is thus an excellent tool for testing new drug targets and developing novel behavioral and drug therapies. In addition, immunological alterations during pregnancy could affect the developing embryo because immune molecules can pass through the placental barrier. In fact, exposure to pathogens during the pregnancy is a known risk factor for ASD, and maternal immune activation can lead to autistic-like features in animals. Interestingly, neuroimmune alterations are common in both autistic individuals and in animal models of ASD. We summarize here the important alterations in inflammatory markers, such as cytokines and chemokines, in patients with ASD and in the VPA animal model.


Subject(s)
Autistic Disorder/immunology , Neuroimmunomodulation/immunology , Animals , Autistic Disorder/chemically induced , Disease Models, Animal , Enzyme Inhibitors/toxicity , Female , Humans , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Valproic Acid/toxicity
15.
Neuroimmunomodulation ; 25(5-6): 280-284, 2018.
Article in English | MEDLINE | ID: mdl-30121669

ABSTRACT

OBJECTIVE: Considering the potential role of lymphocytes in the pathophysiology of autism spectrum disorder (ASD), we aimed to evaluate possible alterations of T cell pools in the lymphoid organs of an animal model of autism induced by valproic acid (VPA). Pregnant Swiss mice received a single intraperitoneal injection of 600 mg/kg of VPA (VPA group) or saline (control group) on day 11 of gestation. Male offspring were euthanized on postnatal day 60 for removal of thy-muses, spleens, and a pool of inguinal, axillary and brachial lymph nodes. Cellularity was evaluated, and flow cytometry analysis was performed on cell suspensions incubated with the mouse antibodies anti-CD3-FITC, anti-CD4-PE, and anti-CD8-PE-Cy7. We observed that the prenatal exposure to VPA induced a reduction in the numbers of CD3+CD4+ T cells in their lymph nodes when compared to the control animals. This was specific since it was not seen in the thymus or spleen. The consistent decrease in the number of CD4+ T cells in subcutaneous lymph nodes of mice from the animal model of autism may be related to the allergic symptoms frequently observed in ASD. Further research is necessary to characterize the immunological patterns in ASD and the connection with the pathophysiology of this disorder.


Subject(s)
Autistic Disorder/immunology , CD4-Positive T-Lymphocytes/immunology , Lymph Nodes/immunology , Animals , Autistic Disorder/chemically induced , Disease Models, Animal , Enzyme Inhibitors/toxicity , Female , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Valproic Acid/toxicity
16.
Article in English | MEDLINE | ID: mdl-29872390

ABSTRACT

Autism spectrum disorder (ASD) is characterized by impairments in both social communication and interaction and repetitive or stereotyped behaviors. Although its etiology remains unknown, genetic and environmental risk factors have been associated with this disorder, including the exposure to valproic acid (VPA) during pregnancy. Resveratrol (RSV) is an anti-inflammatory and antioxidant molecule known to prevent social impairments in the VPA animal model of autism. This study aimed to analyze the effects of prenatal exposure to VPA, as well as possible preventive effects of RSV, on sensory behavior, the localization of GABAergic parvalbumin (PV+) neurons in sensory brain regions and the expression of proteins of excitatory and inhibitory synapses. Pregnant rats were treated daily with RSV (3.6 mg/kg) from E6.5 to E18.5 and injected with VPA (600 mg/kg) in the E12.5. Male pups were analyzed in Nest Seeking (NS) behavior and in whisker nuisance task (WNT). At P30, the tissues were removed and analyzed by immunofluorescence and western blotting. Our data showed for the first time an altered localization of PV+-neurons in primary sensory cortex and amygdala. We also showed a reduced level of gephyrin in the primary somatosensory area (PSSA) of VPA animals. The treatment with RSV prevented all the aforementioned alterations triggered by VPA. Our data shed light on the relevance of sensory component in ASD and highlights the interplay between RSV and VPA animal model as an important tool to investigate the pathophysiology of ASD.

17.
Data Brief ; 18: 1433-1440, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29904648

ABSTRACT

This article contains data of Social Transmission of Food Preference in an animal model of autism and the evaluation of a set of microRNA analyzed in autistic patients and animal model of autism. The analyses of the absolute consumption of two flavored food by male rats prenatally exposed to valproic acid (VPA) and treated with resveratrol (RSV), showed that VPA animals show a trend to eat less of the flavored food presented by a demonstrator rat. We also identified 13 microRNA with similar levels among rodents' experimental groups, as well as 11 microRNA with no alterations between autistic and control subjects. Further evaluation of mechanisms of VPA and RSV actions on behavioral and molecular alterations can shed light in important biomarkers and etiological triggers of autistic spectrum disorders.

18.
Food Chem Toxicol ; 115: 336-343, 2018 May.
Article in English | MEDLINE | ID: mdl-29510222

ABSTRACT

Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD.


Subject(s)
Anticonvulsants/toxicity , Autistic Disorder/prevention & control , Autistic Disorder/psychology , Behavior, Animal/drug effects , Circulating MicroRNA/genetics , Disease Models, Animal , Protein Biosynthesis , Stilbenes/pharmacology , Valproic Acid/toxicity , Adolescent , Animals , Antioxidants/pharmacology , Autistic Disorder/chemically induced , Child , Child, Preschool , Circulating MicroRNA/blood , Female , Humans , Male , Maternal Exposure , MicroRNAs/blood , MicroRNAs/genetics , Pregnancy , Prenatal Exposure Delayed Effects , Rats, Wistar , Resveratrol
20.
J Mol Neurosci ; 59(3): 326-33, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26614346

ABSTRACT

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Deregulation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling has been associated with increased proliferative capabilities, invasiveness, and chemoresistance in several types of cancer. However, the relevance of this pathway in MB remains unknown. Here, we show that the selective TrkB inhibitor N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide (ANA-12) markedly reduced the viability and survival of human cell lines representative of different MB molecular subgroups. These findings provide the first evidence supporting further investigation of TrkB inhibition as a potential novel strategy for MB treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Benzamides/pharmacology , Brain Neoplasms/metabolism , Medulloblastoma/metabolism , Membrane Glycoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Receptor, trkB , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...