Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Bioorg Med Chem Lett ; 60: 128549, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35041943

ABSTRACT

BTK is a tyrosine kinase playing an important role in B cell and myeloid cell functions through B cell receptor (BCR) signaling and Fc receptor (FcR) signaling. Selective inhibition of BTK has the potential to provide therapeutical benefits to patients suffering from autoimmune diseases. Here we report the design, optimization, and characterization of novel potent and highly selective covalent BTK inhibitors. Starting from a piperazinone hit derived from a selective reversible inhibitor, we solved the whole blood cellular potency issue by introducing an electrophilic warhead to reach Cys481. This design led to a covalent irreversible BTK inhibitor series with excellent kinase selectivity as well as good whole blood CD69 cellular potency. Optimization of metabolic stability led to representative compounds like 42, which demonstrated strong cellular target occupancy and inhibition of B-cell proliferation measured by proximal and distal functional activity.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , B-Lymphocytes/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 65(2): 1206-1224, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34734694

ABSTRACT

Multiple Sclerosis is a chronic autoimmune neurodegenerative disorder of the central nervous system (CNS) that is characterized by inflammation, demyelination, and axonal injury leading to permeant disability. In the early stage of MS, inflammation is the primary driver of the disease progression. There remains an unmet need to develop high efficacy therapies with superior safety profiles to prevent the inflammation processes leading to disability. Herein, we describe the discovery of BIIB091, a structurally distinct orthosteric ATP competitive, reversible inhibitor that binds the BTK protein in a DFG-in confirmation designed to sequester Tyr-551, an important phosphorylation site on BTK, into an inactive conformation with excellent affinity. Preclinical studies demonstrated BIB091 to be a high potency molecule with good drug-like properties and a safety/tolerability profile suitable for clinical development as a highly selective, reversible BTKi for treating autoimmune diseases such as MS.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Discovery , Multiple Sclerosis , Protein Kinase Inhibitors , Animals , Male , Rats , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Macaca fascicularis , Multiple Sclerosis/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley , Tissue Distribution
4.
AAPS J ; 23(6): 115, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741215

ABSTRACT

The objective of this manuscript is to provide the reader with a hypothetical case study to present an immunogenicity risk assessment for a multi-specific therapeutic as part of Investigational New Drug (IND) application. In order to provide context for the bioanalytical strategies used to support the multi-specific therapeutic presented herein, the introduction focuses on known immunogenicity risk factors. The subsequent hypothetical case study applies these principles to a specific example HC-12, based loosely on anti-TNFα and anti-IL-17A bispecific molecules previously in development, structured as an example immunogenicity risk assessment for submission to health authorities. The risk of higher incidence and safety impact of anti-drug antibodies (ADA) due to large protein complexes is explored in the context of multi-specificity and multi-valency of the therapeutic in combination with the oligomeric forms of the targets.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies/immunology , Risk Assessment/methods , Humans , Incidence , Interleukin-17/immunology , Investigational New Drug Application , Risk Factors , Tumor Necrosis Factor-alpha/immunology
5.
Bioorg Med Chem ; 44: 116275, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34314938

ABSTRACT

Bruton's tyrosine kinase (BTK) is an essential node on the BCR signaling in B cells, which are clinically validated to play a critical role in B-cell lymphomas and various auto-immune diseases such as Multiple Sclerosis (MS), Pemphigus, and rheumatoid arthritis (RA). Although non-selective irreversible BTK inhibitors have been approved for oncology, due to the emergence of drug resistance in B-cell lymphoma associated with covalent inhibitor, there an unmet medical need to identify reversible, selective, potent BTK inhibitor as viable therapeutics for patients. Herein, we describe the identification of Hits and subsequence optimization to improve the physicochemical properties, potency and kinome selectivity leading to the discovery of a novel class of BTK inhibitors. Utilizing Met ID and structure base design inhibitors were synthesized with increased in vivo metabolic stability and oral exposure in rodents suitable for advancing to lead optimization.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacokinetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
6.
Clin Transl Immunology ; 10(6): e1295, 2021.
Article in English | MEDLINE | ID: mdl-34141433

ABSTRACT

OBJECTIVES: Bruton's tyrosine kinase (BTK) plays a non-redundant signaling role downstream of the B-cell receptor (BCR) in B cells and the receptors for the Fc region of immunoglobulins (FcR) in myeloid cells. Here, we characterise BIIB091, a novel, potent, selective and reversible small-molecule inhibitor of BTK. METHODS: BIIB091 was evaluated in vitro and in vivo in preclinical models and in phase 1 clinical trial. RESULTS: In vitro, BIIB091 potently inhibited BTK-dependent proximal signaling and distal functional responses in both B cells and myeloid cells with IC50s ranging from 3 to 106 nm, including antigen presentation to T cells, a key mechanism of action thought to be underlying the efficacy of B cell-targeted therapeutics in multiple sclerosis. BIIB091 effectively sequestered tyrosine 551 in the kinase pocket by forming long-lived complexes with BTK with t 1/2 of more than 40 min, thereby preventing its phosphorylation by upstream kinases. As a key differentiating feature of BIIB091, this property explains the very potent whole blood IC50s of 87 and 106 nm observed with stimulated B cells and myeloid cells, respectively. In vivo, BIIB091 blocked B-cell activation, antibody production and germinal center differentiation. In phase 1 healthy volunteer trial, BIIB091 inhibited naïve and unswitched memory B-cell activation, with an in vivo IC50 of 55 nm and without significant impact on lymphoid or myeloid cell survival after 14 days of dosing. CONCLUSION: Pharmacodynamic results obtained in preclinical and early clinical settings support the advancement of BIIB091 in phase 2 clinical trials.

7.
Mult Scler ; 27(6): 883-894, 2021 05.
Article in English | MEDLINE | ID: mdl-32716690

ABSTRACT

BACKGROUND: Delayed-release dimethyl fumarate (DMF) demonstrates sustained efficacy and safety for relapsing forms of MS. Absolute lymphocyte count (ALC) is reduced initially, then stabilizes on treatment. OBJECTIVE: PROCLAIM, a 96-week, prospective, open-label, phase 3b study, assessed lymphocyte subsets and immunoglobulin (Ig) levels during 48 and 96 weeks (W) of DMF treatment. METHODS: Patients received 240 mg DMF BID. Endpoints: lymphocyte subset count changes (primary); Ig isotypes and ALC changes (secondary); adverse events and relationship between ALC changes and ARR/EDSS (exploratory); and neurofilament assessment (ad hoc). RESULTS: Of 218 patients enrolled, 158 (72%) completed the study. Median ALC decreased 39% from baseline to W96 (BL-W96), stabilizing above the lower limit of normal (baseline: 1.82 × 109/L; W48: 1.06 × 109/L; W96: 1.05 × 109/L). CD4 + and CD8 + T cells correlated highly with ALC from BL-W96 (p < 0.001). Relative to total T cells, naive CD4 + and CD8 + T cells increased, whereas CD4 + and CD8 + central and effector memory T cells decreased. Total IgA, IgG, IgM, and IgG1-4 subclass levels remained stable. Adverse event rates were similar across ALC subgroups. ARR, EDSS, and neurofilament were not correlated with ALCs. CONCLUSION: Lymphocyte decreases with DMF were maintained over treatment, yet immunoglobulins remained stable. No increase in infection incidence was observed in patients with or without lymphopenia. SUPPORT: Biogen.


Subject(s)
Dimethyl Fumarate , Multiple Sclerosis, Relapsing-Remitting , Anti-Inflammatory Agents/therapeutic use , Dimethyl Fumarate/therapeutic use , Humans , Immunity, Humoral , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Neoplasm Recurrence, Local , Prospective Studies
8.
J Med Chem ; 63(21): 12526-12541, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32696648

ABSTRACT

Autoreactive B cell-derived antibodies form immune complexes that likely play a pathogenic role in autoimmune diseases. In systemic lupus erythematosus (SLE), these antibodies bind Fc receptors on myeloid cells and induce proinflammatory cytokine production by monocytes and NETosis by neutrophils. Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that signals downstream of Fc receptors and plays a transduction role in antibody expression following B cell activation. Given the roles of BTK in both the production and sensing of autoreactive antibodies, inhibitors of BTK kinase activity may provide therapeutic value to patients suffering from autoantibody-driven immune disorders. Starting from an in-house proprietary screening hit followed by structure-based rational design, we have identified a potent, reversible BTK inhibitor, BIIB068 (1), which demonstrated good kinome selectivity with good overall drug-like properties for oral dosing, was well tolerated across preclinical species at pharmacologically relevant doses with good ADME properties, and achieved >90% inhibition of BTK phosphorylation (pBTK) in humans.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Administration, Oral , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Antigens, T-Independent/chemistry , Antigens, T-Independent/metabolism , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Binding Sites , Catalytic Domain , Dogs , Drug Evaluation, Preclinical , Female , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/metabolism , Pyrimidines/therapeutic use , Rats , Structure-Activity Relationship
9.
Bioanalysis ; 11(24): 2207-2244, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31820675

ABSTRACT

The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers New Insights in Biomarker Assay Validation, Current & Effective Strategies for Critical Reagent Management, Flow Cytometry Validation in Drug Discovery & Development & CLSI H62, Interpretation of the 2019 FDA Immunogenicity Guidance and Gene Therapy Bioanalytical Challenges. Part 1 (Innovation in Small Molecules and Oligonucleotides & Mass Spectrometry Method Development Strategies for Large Molecule Bioanalysis) and Part 2 (Recommendations on the 2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy) are published in volume 11 of Bioanalysis, issues 22 and 23 (2019), respectively.


Subject(s)
Biological Assay/methods , Biomarkers/metabolism , Flow Cytometry/methods , Genetic Therapy/methods , United States Food and Drug Administration/standards , History, 21st Century , Humans , United States
10.
Bioorg Med Chem ; 27(13): 2905-2913, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31138459

ABSTRACT

Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Humans , Protein Kinase Inhibitors/pharmacology
11.
Neurology ; 92(15): e1724-e1738, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30918100

ABSTRACT

OBJECTIVE: To assess functional changes in lymphocyte repertoire and subsequent clinical implications during delayed-release dimethyl fumarate (DMF) treatment in patients with multiple sclerosis. METHODS: Using peripheral blood from several clinical trials of DMF, immune cell subsets were quantified using flow cytometry. For some patients, lymphocyte counts were assessed after DMF discontinuation. Incidence of adverse events, including serious and opportunistic infections, was assessed. RESULTS: In DMF-treated patients, absolute lymphocyte counts (ALCs) demonstrated a pattern of decline followed by stabilization, which also was reflected in the global reduction in numbers of circulating functional lymphocyte subsets. The relative frequencies of circulating memory T- and B-cell populations declined and naive cells increased. No increased incidence of serious infection or malignancy was observed for patients treated with DMF, even when stratified by ALC or T-cell subset frequencies. For patients who discontinued DMF due to lymphopenia, ALCs increased after DMF discontinuation; recovery time varied by ALC level at discontinuation. T-cell subsets closely correlated with ALCs in both longitudinal and cross-sectional analyses. CONCLUSIONS: DMF shifted the immunophenotype of circulating lymphocyte subsets. ALCs were closely correlated with CD4+ and CD8+ T-cell counts, indicating that lymphocyte subset monitoring is not required for safety vigilance. No increased risk of serious infection was observed in patients with low T-cell subset counts. Monitoring ALC remains the most effective way of identifying patients at risk of subsequently developing prolonged moderate to severe lymphopenia, a risk factor for progressive multifocal leukoencephalopathy in DMF-treated patients. TRIAL REGISTRATION NUMBERS: EUDRA CT 2015-001973-42, NCT00168701, NCT00420212, NCT00451451, and NCT00835770.


Subject(s)
Dimethyl Fumarate/therapeutic use , Immunosuppressive Agents/therapeutic use , Lymphocytes/drug effects , Multiple Sclerosis, Relapsing-Remitting/blood , Adult , B-Lymphocytes/drug effects , CD4-CD8 Ratio , Cross-Sectional Studies , Delayed-Action Preparations , Dimethyl Fumarate/adverse effects , Dimethyl Fumarate/pharmacology , Female , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/pharmacology , Longitudinal Studies , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/chemically induced , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Risk Assessment , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...