Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36634920

ABSTRACT

BACKGROUND: Pixatimod is a unique activator of the Toll-like Receptor 9 pathway. This phase I trial evaluated safety, efficacy and pharmacodynamics of pixatimod and PD-1 inhibitor nivolumab in immunologically cold cancers. METHODS: 3+3 dose escalation with microsatellite stable metastatic colorectal cancer (MSS mCRC) and metastatic pancreatic ductal adenocarcinoma (mPDAC) expansion cohorts. Participants received pixatimod once weekly as a 1-hour intravenous infusion plus nivolumab every 2 weeks. Objectives included assessment of safety, antitumor activity, pharmacodynamics, and pharmacokinetic profile. RESULTS: Fifty-eight participants started treatment. The maximum tolerated dose of pixatimod was 25 mg in combination with 240 mg nivolumab, which was used in the expansion phases of the study. Twenty-one grade 3-5 treatment-related adverse events were reported in 12 participants (21%); one participant receiving 50 mg pixatimod/nivolumab had a treatment-related grade 5 AE. The grade 3/4 rate in the MSS mCRC cohort (n=33) was 12%. There were no responders in the mPDAC cohort (n=18). In the MSS mCRC cohort, 25 participants were evaluable (initial postbaseline assessment scans >6 weeks); of these, three participants had confirmed partial responses (PR) and eight had stable disease (SD) for at least 9 weeks. Clinical benefit (PR+SD) was associated with lower Pan-Immune-Inflammation Value and plasma IL-6 but increased IP-10 and IP-10/IL-8 ratio. In an MSS mCRC participant with PR as best response, increased infiltration of T cells, dendritic cells, and to a lesser extent NK cells, were evident 5 weeks post-treatment. CONCLUSIONS: Pixatimod is well tolerated at 25 mg in combination with nivolumab. The efficacy signal and pharmacodynamic changes in MSS mCRC warrants further investigation. TRIAL REGISTRATION NUMBER: NCT05061017.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Nivolumab/pharmacology , Nivolumab/therapeutic use , Toll-Like Receptor 9 , Chemokine CXCL10 , Adenocarcinoma/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Angiogenesis Inhibitors/therapeutic use , Microsatellite Repeats , Pancreatic Neoplasms
2.
J Immunother Cancer ; 6(1): 54, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29898788

ABSTRACT

BACKGROUND: Pixatimod (PG545) is a novel clinical-stage immunomodulatory agent capable of inhibiting the infiltration of tumor-associated macrophages (TAMs) yet also stimulate dendritic cells (DCs), leading to activation of natural killer (NK) cells. Preclinically, pixatimod inhibits heparanase (HPSE) which may be associated with its inhibitory effect on TAMs whereas its immunostimulatory activity on DCs is through the MyD88-dependent TLR9 pathway. Pixatimod recently completed a Phase Ia monotherapy trial in advanced cancer patients. METHODS: To characterize the safety of pixatimod administered by intravenous (IV) infusion, a one month toxicology study was conducted to support a Phase Ia monotherapy clinical trial. The relative exposure (AUC) of pixatimod across relevant species was determined and the influence of route of administration on the immunomodulatory activity was also evaluated. Finally, the potential utility of pixatimod in combination with PD-1 inhibition was also investigated using the syngeneic 4T1.2 breast cancer model. RESULTS: The nonclinical safety profile revealed that the main toxicities associated with pixatimod are elevated cholesterol, triglycerides, APTT, decreased platelets and other changes symptomatic of modulating the immune system such as pyrexia, changes in WBC subsets, inflammatory changes in liver, spleen and kidney. Though adverse events such as fever, elevated cholesterol and triglycerides were reported in the Phase Ia trial, none were considered dose limiting toxicities and the compound was well tolerated up to 100 mg via IV infusion. Exposure (AUC) up to 100 mg was considered proportional with some accumulation upon repeated dosing, a phenomenon also noted in the toxicology study. The immunomodulatory activity of pixatimod was independent of the route of administration and it enhanced the effectiveness of PD-1 inhibition in a poorly immunogenic tumor model. CONCLUSIONS: Pixatimod modulates innate immune cells but also enhances T cell infiltration in combination with anti-PD-1 therapy. The safety and PK profile of the compound supports its ongoing development in a Phase Ib study for advanced cancer/pancreatic adenocarcinoma with the checkpoint inhibitor nivolumab (Opdivo®). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02042781 . First posted: 23 January, 2014 - Retrospectively registered.


Subject(s)
Adenocarcinoma/drug therapy , Pancreatic Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Saponins/therapeutic use , Adenocarcinoma/pathology , Female , Humans , Male , Pancreatic Neoplasms/pathology , Saponins/immunology , Saponins/pharmacology , Pancreatic Neoplasms
3.
Br J Cancer ; 118(8): 1035-1041, 2018 04.
Article in English | MEDLINE | ID: mdl-29531325

ABSTRACT

BACKGROUND: PG545 (pixatimod) is a novel immunomodulatory agent, which has been demonstrated to stimulate innate immune responses against tumours in preclinical cancer models. METHODS: This Phase I study investigated the safety, tolerability, pharmacokinetics, pharmacodynamics and preliminary efficacy of PG545 monotherapy. Escalating doses of PG545 were administered to patients with advanced solid malignancies as a weekly 1-h intravenous infusion. RESULTS: Twenty-three subjects were enrolled across four cohorts (25, 50, 100 and 150 mg). Three dose-limiting toxicities (DLTs)-hypertension (2), epistaxis (1)-occurred in the 150 mg cohort. No DLTs were noted in the 100 mg cohort, which was identified as the maximum-tolerated dose. No objective responses were reported. Best response was stable disease up to 24 weeks, with the disease control rate in evaluable subjects of 38%. Exposure was proportional up to 100 mg and mean half-life was 141 h. The pharmacodynamic data revealed increases in innate immune cell activation, plasma IFNγ, TNFα, IP-10 and MCP-1. CONCLUSION: PG545 demonstrated a tolerable safety profile, proportional PK, evidence of immune cell stimulation and disease control in some subjects. Taken together, these data support the proposed mechanism of action, which represents a promising approach for use in combination with existing therapies.


Subject(s)
Neoplasms/drug therapy , Saponins/administration & dosage , Saponins/pharmacokinetics , Adult , Aged , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/pharmacokinetics , Cohort Studies , Disease Progression , Dose-Response Relationship, Drug , Female , Humans , Immunomodulation , Infusions, Intravenous , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/metabolism , Neoplasms/pathology , Pilot Projects , Saponins/adverse effects
4.
Eur J Cancer ; 51(7): 879-892, 2015 May.
Article in English | MEDLINE | ID: mdl-25754234

ABSTRACT

BACKGROUND: Despite the utility of antiangiogenic drugs in ovarian cancer, efficacy remains limited due to resistance linked to alternate angiogenic pathways and metastasis. Therefore, we investigated PG545, an anti-angiogenic and anti-metastatic agent which is currently in Phase I clinical trials, using preclinical models of ovarian cancer. METHODS: PG545's anti-cancer activity was investigated in vitro and in vivo as a single agent, and in combination with paclitaxel, cisplatin or carboplatin using various ovarian cancer cell lines and tumour models. RESULTS: PG545, alone, or in combination with chemotherapeutics, inhibited proliferation of ovarian cancer cells, demonstrating synergy with paclitaxel in A2780 cells. PG545 inhibited growth factor-mediated cell migration and reduced HB-EGF-induced phosphorylation of ERK, AKT and EGFR in vitro and significantly reduced tumour burden which was enhanced when combined with paclitaxel in an A2780 model or carboplatin in a SKOV-3 model. Moreover, in the immunocompetent ID8 model, PG545 also significantly reduced ascites in vivo. In the A2780 maintenance model, PG545 initiated with, and following paclitaxel and cisplatin treatment, significantly improved overall survival. PG545 increased plasma VEGF levels (and other targets) in preclinical models and in a small cohort of advanced cancer patients which might represent a potential biomarker of response. CONCLUSION: Our results support clinical testing of PG545, particularly in combination with paclitaxel, as a novel therapeutic strategy for ovarian cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/blood , Neoplasms/drug therapy , Ovarian Neoplasms/drug therapy , Saponins/pharmacology , Vascular Endothelial Growth Factor A/blood , Animals , Cisplatin/administration & dosage , Drug Synergism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasms/blood , Ovarian Neoplasms/blood , Ovarian Neoplasms/pathology , Paclitaxel/administration & dosage , Saponins/administration & dosage , Tumor Cells, Cultured , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...